
Rue de Stassart, 36 • B-1050 Bruxelles
Tel : +32 2 550 08 11 • Fax : +32 2 550 08 19

EUROPEAN COMMITTEE FOR STANDARDIZATION
C OM ITÉ EUR OP ÉEN DE NOR M ALIS AT ION
EUROPÄISCHES KOMITEE FÜR NORMUNG

WORKSHOP CWA 13937-1

AGREEMENT August 2000

ICS 35.240.40

J/eXtensions for Financial Services (J/XFS) for the Java Platform - Part
1: Base Architecture - Programmer's Reference

© 2000 CEN All rights of exploitation in any form and by any means reserved world-wide for
CEN National Members

Ref. No CWA 13937-1:2000 E

This CEN Workshop Agreement can in no way be held as being an official standard
as developed by CEN National Members.

Page 2
CWA 13937-1:2000

Foreword
This CWA contains the specifications that define the J/eXtensions for Financial Services (J/XFS) for the Java TM

Platform, as developed by the J/XFS Forum and endorsed by the CEN/ISSS J/XFS Workshop. J/XFS provides
an API for Java applications which need to access financial devices. It is hardware independent and, by using
100% pure Java, also operating system independent.

The CEN/ISSS J/XFS Workshop gathers suppliers (among others the J/XFS Forum members), service providers
as well as banks and other financial service companies. A list of companies participating in this Workshop and
in support of this CWA is available from the CEN/ISSS Secretariat. The specification was agreed upon by the
J/XFS Workshop Meeting of 1999-12-15/16 in Geneva and a subsequent electronic review by the Workshop
participants, and the final version was sent to CEN for publication on 2000/06-21.

The specification is continuously reviewed and commented in the CEN/ISSS J/XFS Workshop. It is therefore
expected that an update of the specification will be published in due time as a CWA, superseding this one. The
information published in this CWA is furnished for informational purposes only. CEN/ISSS makes no warranty
expressed or implied, with respect to this document. Updates of the specification will be available from the
CEN/ISSS J/XFS Workshop public web pages pending their integration in a new version of the CWA (see:
http://www.cenorm.be/isss/workshop/j-XFS/cwa-updates).

The J/XFS specifications are now further developed in the CEN/ISSS J/XFS Workshop. CEN/ISSS Workshops
are open to all interested parties offering to contribute. Parties interested in participating should contact the
CEN/ISSS Secretariat (isss@cenorm.be). To submit questions and comments for the J/XFS specifications,
please contact the CEN/ISSS Secretariat (isss@cenorm.be) who will be forwarding them to the J/XFS
Workshop.

Questions and comments can also be submitted to the members of the J/XFS Forum, who are all CEN/ISSS
J/XFS Workshop members, through the J/XFS Forum web-site http:///www.jxfs.com

This CWA is composed of the following parts:
� Part 1: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Base Architecture -

Programmer's Reference
� Part 2: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Pin Keypad Device Class

Interface - Programmer's Reference
� Part 3: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Magnetic Stripe & Chip Card

Device Class Interface - Programmer's Reference
� Part 4: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Text Input/Output Device Class

Interface - Programmer's Reference
� Part 5: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Cash Dispenser, Recycler and

ATM Interface - Programmer's Reference
� Part 6: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Printer Device Class Interface -

Programmer's Reference
� Part 7: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Alarm Device - Programmer's

Reference
� Part 8: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Sensors and Indicators Unit

Device Class Interface - Programmer's Reference
� Part 9: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Depository Device Class

Interface - Programmer's Reference
� Part 10: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Check Reader/Scanner Device

Class Interface - Programmer's Reference

Note: Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. The
Java Trademark Guidelines are currently available on the web at
http://java.sun.com/nav/business/trademark_guidelines.html.
All other trademarks are trademarks of their respective owners.

Page 3
CWA 13937-1:2000

Contents

1 SCOPE... 4

1.1 OVERVIEW .. 4
1.2 BASIC OPERATION PRINCIPLES... 7
1.3 API SCOPE.. 8

2 GENERAL CONCEPTS.. 10

2.1 OBJECT INSTANTIATION MODEL.. 10
2.2 BASIC USAGE SEQUENCE... 10
2.3 RESERVING DEVICES FOR EXCLUSIVE USE... 12
2.4 REMOTE DEVICE ACCESS... 12
2.5 ASYNCHRONOUS DEVICE INPUT/OUTPUT AND EVENTS.. 13
2.6 NUMERIC IDENTIFIERS USED IN J/XFS... 14
2.7 THREADS AND FLOW CONTROL.. 14
2.8 QUEUING... 16
2.9 STARTUP & SHUTDOWN.. 16
2.10 USING COMPLEX DEVICES... 16
2.11 FAILURE DETECTION AND REACTION... 17
2.12 ENSURING DEVICE INDEPENDENCE.. 18

2.12.1 Device dependent mechanisms ... 18
2.12.2 Vendor specific functionality (directIO) ... 19

2.13 POWER MANAGEMENT.. 19
2.14 UPDATING FIRMWARE IN A DEVICE... 20
2.15 NAMING CONVENTIONS... 21
2.16 RETURN VALUES... 21
2.17 SECURITY AND ENCRYPTION... 22

3 MAIN J/XFS COMPONENTS.. 23

3.1 J/XFS PACKAGES.. 23
3.2 JXFSDEVICEMANAGER ... 25
3.3 DEVICE CONTROL... 29

3.3.1 Object model... 29
3.3.2 IJxfsBaseControl .. 30

3.4 DEVICESERVICE.. 35
3.4.1 Object model... 35
3.4.2 IJxfsBaseService ... 36

3.5 DEVICE COMMUNICATION... 41

4 EXCEPTIONS AND EVENTS ... 43

4.1 EXCEPTIONS.. 44
4.2 EVENTS... 45

4.2.1 Event classes... 45
4.2.2 Registering for Events and Event Delivery... 48

5 SUPPORT CLASSES... 51

5.1 JXFSSERVER AND JXFSCONFIGURATION ... 51
5.2 JXFSDEVICEINFORMATION.. 52
5.3 TRACING AND ERROR LOGGING... 54

5.3.1 Overview... 54
5.3.2 JxfsLogger .. 55

5.4 J/XFS CONSTANT CODES... 59
5.5 TEMPORARY DATA AND GENERIC CLASSES.. 61

5.5.1 JxfsType.. 61
5.5.2 JxfsStatus .. 62
5.5.3 JxfsMediaStatus.. 63
5.5.4 JxfsThresholdStatus.. 65

5.6 PERSISTENT DATA... 67
5.7 VERSION CONTROL.. 67

Page 4
CWA 13937-1:2000

1 Scope

1.1 Overview
J/XFS defines a standardized interface to all common financial devices which can be used
by applications and applets1 written in the Java programming language. One of the reasons
why these new banking applications are written in the Java language is that these programs
are supposed to run on many different hardware platforms. One of the main obstacles in
doing platform independent programming is accessing devices.
One of the main goals of this standard is to allow access to banking devices in a 100% pure
Java way on both thin and thick clients, e.g. on a network computer as well as in a Linux,
WinNT, OS/2 or Unix workstation.

Another goal is to allow the remote access to devices on different machines. Additional
efforts have to be done to find and access these devices. This is the main reason why
central administration processes and an additional communication layer are also defined by
this architecture.
If only local access to devices is needed, an implementation may omit this communication
layer. No change is required to the Device Controls or Device Services. So, neither the
application programmer nor the hardware manufacturer who programs a Device Service
need be aware of whether or not a communication layer exists in the middle.

Due to the nature of network computers which are supported as clients, it is not possible to
guarantee that local persistent storage possibilities exist on each client. Therefore, any
configuration information must be kept on a central server. If local storage exists and no
central configuration possibilities are required, all configuration information can also be
kept on the local workstation.

The basic architecture of J/XFS is similar to the JavaPOS2 architecture. It is event driven
and asynchronous.
Three basic levels are defined in JavaPOS. For J/XFS this model is extended by a
communication layer, which provides device communication that allows distribution of
applications and devices within a network. So we have the following layers in J/XFS:

� Application or applet
� Device Control and Manager
� Device Communication
� Device Service

The Device Control API defines the way a Java application or applet can communicate
with a specific device. Additionally, the Device Control layer contains the central Device
Manager which organizes access and location of the services. It is the central coordinating
instance in any Java VM which must access financial devices.
The Device Communication Layer is the layer which resolves the sharing of devices. It is
invisible to the application. The only exception is that network errors are presented to the
application. It must be able to cope with lost connections.
The Device Service is the layer supplied by the device manufacturer for use with J/XFS. It
has a defined API which allows the Device Control and Device Communication layer to
request device actions and translates them into the device specific commands which are
then sent to the physical attached device. The way of connecting to the local device is not
defined in this standard, it is rather left to the service provider. In the case of devices which
attach through the serial or parallel ports the Java CommAPI may be used. Thus, the
Device Service layer may not be 100% pure Java but the complete basic infrastructure of
J/XFS is.

1 J/XFS is designed to be also usable by applets in a browser e.g. on a network computer. So, for the remainder
of the document, ‘application‘ also always means ‘applet’.
2 JavaPOS (Java point of sale) is an initiative for the retail industry with the goal of providing unified device
access to POS devices. See http://www.javapos.com .

Page 5
CWA 13937-1:2000

Application developers program against Device Control objects and the Device Manager
which reside in the Device Control Layer. This is the usual interface between applications
and J/XFS Devices. Device Control objects access the Device Manager to get access to an
associated Device Service. And the Device Service objects finally provide the functionality
to access the real device (i.e. they are like a device driver).

Java applications or applets run in a Java virtual machine (Java VM), possibly embedded
in a WWW browser. Under some operating systems (i.e. JavaPC) only one JavaVM can
run in the system (i.e. it allows multiple threads in the program but not multiple programs).
There the J/XFS layers must run in the same process context as the application or applet.
The bigger operating systems like OS/2, Windows NT or Unix can run multiple JavaVMs
in parallel. This must also be possible with J/XFS.
Thus, the design of J/XFS must cope with the following scenarios:
1. A single JavaVM is present on a workstation and is running the application or applet

(J/XFS Client) which accesses only local devices.
2. A single JavaVM is present on a workstation and is running the application or applet

which also accesses one or more remote devices (which are physically attached to
another workstation).

3. Multiple JavaVMs, each running an application or applet, run on the same
workstation. As ports through which devices are connected (i.e. the com port) cannot
be accessed in parallel only one of the running applications must control the local
devices. For this scenario there is a distinction of whether these multiple applications
really run in parallel or if they are started only one at any time.

Only in the very simple first case it is possible to omit the communication layer. A device
access from an application in one JavaVM to another one running on the same machine is
similar to accessing a device on another machine as also interprocess communication is
needed.

In the case 1 the following layers are present:

DeviceControl

DeviceService

CommAPI or JNI

physical device A

Application or applet

JxfsDevice
Manager

JxfsConfiguration

J/XFS Client

Workstation

The application requests the device from the DeviceManager and accesses the device via
the DeviceControl. The DeviceControl is directly connected to the DeviceService for the
device. The JxfsDeviceManager controls both objects. The whole configuration may be
kept locally, either hard-coded in JxfsConfiguration object or somehow configurable on
disk or in memory.

The next diagram illustrates the basic architecture for the case 2 (Remark: Both Client1
and Client2 access the server in the same way. The connections for Client1 are not shown
here):

Page 6
CWA 13937-1:2000

DeviceControl

DeviceCommunication

DeviceService

CommAPI or JNI

physical device A

Application or applet

JxfsDevice
Manager

DeviceCommunication

DeviceService

CommAPI or JNI

physical device B

JxfsConfigServer
(Configuration
repository)

Jxfs
DynamicServer
(Device
availability
information)

J/XFS Client1 J/XFS Client2
Server

DeviceControl

JxfsConfigurationJxfsConfiguration

JxfsDevice
Manager

Application or applet

W orkstation A W orkstation B

The clients have to start the J/XFS infrastructure upon startup. When the
JxfsDeviceManager is instantiated it queries (via a JxfsConfiguration object) the central
information repository relating to all J/XFS devices. This contains the configuration
information for each workstation (the available devices, where they are attached, which
service class handles them, whether a device can only be accessed on the local machine or
also from a remote workstation, needed initialization information for each local device
etc.). The means with which this information is stored is not within the scope of J/XFS. It
might be a file, a database or an object repository. Only the access API is defined.
After successful initialization any locally connected devices which should be available to
other workstations are registered with the JxfsDynamicServer. It thus contains up-to-date
information on the availability of the devices. Any other workstation can query for a list of
available remote devices there.

In the case 3 mentioned on the last page the “J/XFS Client1” and “J/XFS Client2”
processes may run on the same workstation. If it is guaranteed that only one process runs at
any time no problems arise. If they run in parallel, however, the following scenario must be
used:

DeviceControl

DeviceCommunication

DeviceService

CommAPI or JNI

physical device A

Application or applet

JxfsDevice
Manager

DeviceCommunication

Jxfs
DynamicServer
(Device
availability
information)

J/XFS Client1

Server

DeviceControl

JxfsConfigurationJxfsConfiguration

JxfsDevice

Manager

Application or applet

Workstation A

J/XFS Client2

JxfsConfigServer
(Configuration
repository)

Page 7
CWA 13937-1:2000

Why is it required that the J/XFS client2 has no local device access? Because it is
impossible that multiple Device Services for the same physical device are started. And why
that? Because access to the device through the physical port it is connected to is restricted
to 1 process only.
So, the configuration of J/XFS must cope with this fact. Several J/XFS clients running in
parallel on one workstation must be differently configured. One must be clearly defined to
be the J/XFS client which instantiates all the DeviceServices of the local devices and any
other client running on this workstation must now access these devices as if they were
remote.
Additionally, the first, controlling, J/XFS client must also be the first to start up and the
last to shut down. If not, the others won’t be able to access the devices any longer (because
the DeviceService is no longer available).

The correct way to configure such a system to use J/XFS would be to use a (likely very
small) J/XFS client application which has the sole need to instantiate the DeviceServices
needed to access all the local devices. It can be started automatically during the boot
process of the workstation and will not terminate until the shutdown of the computer. The
other applications are now free to access this device as if it were remote.

1.2 Basic operation principles
Let’s now look in depth at the operation principles which define the way in which J/XFS
uses financial devices.

First, we are giving a short overview about what happens if a device is accessed (a small
distributed sample scenario). It is illustrated in the following graphic and used to describe
the control flow in the following description.

On each client which participates in J/XFS device access, the application or applet
generates a new JxfsDeviceManager object upon startup (1). It does the initialization of the
J/XFS subsystem by first querying the repository for its configuration data (2). Then it
instantiates all the Device Services for the locally connected devices (3). If configured for
remote access also the objects responsible for enabling this remote connection are
generated (4) and connected to their DeviceService (4b). If all is successful, the now
available DeviceService is registered at the central directory where other J/XFS clients can
query for accessible devices (5).
If the local application or applet now wants to access a J/XFS device, it has to ask the
DeviceManager for the device. This happens via the getDevice() method (6). During this
method the DeviceManager generates a Device Control (7), locates the DeviceService and

PassbookPrinter

J/XFS Client1 (applet or application)
J/XFS repositoryAppl icat ion

JxfsDeviceManager

JxfsPassbookPr inter

JxfsConf igServer:

Cl ient1: PassbookPr inter , remote
Cl ient2: JournalPr inter,remote
Cl ient3: ID Card, local_only

A_PassbookPr interServ iceImplementat ion

Java CommAPI

Jx fsPassbookCommsLis tener

2: queryConf igFor(Cl ient1)

1: new
9: access

7: new

4: generate Jx fsDynamicServer :

regis teredDeviceTable:
Cl ient1: PassbookPrinter, . . .
Cl ient2: JournalPrinter, . . .

5: registerDevice

8: connect to
6 : getDevice

4b: connect to

3: generate

Page 8
CWA 13937-1:2000

connects it to the Control (8) and returns the Device Control to the application which can
now start to use the device (9).

If the requested device were on a remote machine, then the DeviceManager would, in the
getDevice() method, first ask the JxfsServer for the location of the requested device and,
instead of connecting the generated DeviceControl to a local DeviceService, use a remote
object to establish a connection to the remote device. Note that the DeviceControl itself
(and with it the application) would not notice any difference.

In order to minimize network traffic, the design of the Device Service API was done so
that the granularity of the device access methods is as big as possible without impacting
functionality.
If a Device Control is requested, the JxfsDeviceManager has to load the corresponding
classes and connect the Device Control to a Device Communication or Device Service
object. It also keeps track of whether a Service (or Communication) object already exists
for the specified device. If true, it connects this to the Device Control, if not, it generates it.

There exists exactly one Device Service object for each physical device. If additional
requests arrive, they are all routed to the same Device Service object. But there is no
restriction on the number of DeviceControl objects accessing the device within J/XFS!
Thus, it is the duty of the service object to synchronize concurrent commands to a device.

There are two types of methods within J/XFS: Synchronous and asynchronous methods.
The former ones are always used for small functions which do not need to access the
device, like e.g. querying the version of an object, querying the device status (which is held
in the DeviceService) or repository access. If synchronous methods fail they throw an
JxfsException with additional information.
Any operation on a device is asynchronous. This means, that it immediately returns an
identificationID for the requested operation to the application. The operation itself is
queued and executed in the order it arrives at the DeviceService (except if the device is
claimed, see the later chapter “Reserving devices for exclusive use” for details). During
execution on the device the DeviceService sends one or more events to the application.
Intermediate Events are sent to inform of intermediate steps during the execution of the
command, and as soon as the operation is completed, one OperationCompleteEvent is sent.
Both events also contain the identificationID to enable the application to uniquely identify
the operation the event belongs to.
Additionally, if the device status changes, the DeviceService has the possibility to send
StatusEvents asynchronously to the application.
For each of the defined three event types the application can choose whether or not it wants
to receive these events by calling the respective addListener method of the DeviceControl.

The above explanations are only meant to give a short overview of the design of J/XFS,
they are all expanded in the following chapters.

1.3 API Scope
J/XFS defines the following API’s:
1. The JxfsDeviceManager API between the application or applet and the internal

classes.
2. The Device Control API the application or applet uses to access a specific device, for

all supported device types.
3. The Device Service API used by the Device Control to access a specific device type.

This interface must be implemented by the manufacturer of a specific hardware
device.

4. APIs for the additional supporting classes such as JxfsLogger, JxfsType etc.
5. All relevant Event objects and Error codes used by the Device Control and Device

Service layer.
6. Definition of relevant data stored in the JxfsConfigServer and JxfsDynamicServer and

their respective access methods.

Page 9
CWA 13937-1:2000

The following graphic outlines the APIs:

DC DM

Application or applet

Support
Objects

DS

Configuration

4,51

6

2

3

Page 10
CWA 13937-1:2000

2 General Concepts
In the following section several of the key concepts in the J/XFS design are described in
detail. This information provides the foundation for the API design found in the following
chapters.
This is a very important part of this document as it serves to give a common understanding
of how the properties, methods and events are to be used in a real J/XFS compliant
application or applet.

2.1 Object instantiation model
In the J/XFS architecture there are a lot of classes involved. Some of them reside in local
machines, some of them on remote machines. Some of them only occur once, others may
have multiple instances.

Singleton objects are objects which are instantiated exactly once in a Java VM. They are
the JxfsDeviceManager and the JxfsLogger.

The applications access a device through its Device Control object. A single application
may access multiple DC-objects for the same device (perhaps in different parts of the
program). If an application remotely wants to access a device is also gets a DeviceControl,
and a remote connection to the DS is established. Thus, Device Controls for the devices
can occur multiple times.
The Device Service for a specific device manages access to this device. It is instantiated
only once for each device.
The following graphic gives a short overview about this. For the remote case the
communication comes in via an object which looks just like another Device Control
accessing the same Device Service object for the device.

App1

DC1 DC2
Remote
connection

DS

Hardware

Device-
Manager

 Java VM

If an application or applet wants to gain exclusive access to a device, it uses the claim()
method on its Device Control. The basis is the control object, i.e. that if an application gets
two control objects for the same device a claim() to the second one will fail, even though it
is used by the same application. So, an application can either use one control for all its
activities with a device or use the claiming mechanism to synchronize its different program
parts if necessary.
The synchronization itself is done in the Device Service layer. The Device Control only
routes the requests to the DS and cannot make a decision on its own. The Device Service
must decide whether or not a claim() is successful. The same applies for the method calls.
Only the Device Service can decide whether or not a method invocation is executed or
queued for execution.

2.2 Basic usage sequence
The basic application usage scenario for all devices is defined by the following order:

Page 11
CWA 13937-1:2000

1. The application or applet gets access to a new Device Control by calling the
getDevice() method of the JxfsDeviceManager.

2. It registers for the events it is interested in by using the addXXXListener() methods of
the DC (Note: Registering and deregistering for events is always possible, not only
here).

3. It issues an open() call to the DC. The first open() received by a Device Service
physically connects to the device.

4. It controls the device through the device specific functions. If it wants to exclusively
use the device it can use the claim() and release() methods.

5. It closes the device with the method close(). It may now restart at number 3 or
6. It removes its listeners from the Device Control.
7. It stops using the Device Control and deregisters the Device Control by calling the

deregisterDevice() method of the DeviceControl.
The first methods here is the getDevice() method offered by the Device Manager which
enables any functionality of the Device Control. At this time, the infrastructure down to the
specific device is erected and guaranteed to work. Before the open() method is called any
other method call except for the addXXXListener() methods results in a
JXFS_E_CLOSED exception. The reverse operation to getDevice() is the
deregisterDevice() method of the DeviceControl after which the DC is no longer usable.
Then two bracket method pairs exists. One is the open-close pair which enables access to
the other functions of the device. Any device specific methods can then be used by the
accessing application or applet.
The other bracket is optional to reserve the device for exclusive use. It is the claim-release
pair of methods.

All J/XFS devices have the states shown in the diagram.

After the start (big dot) they are uninitialized , and an open call brings them to ‘Working’
(everything ready). During their operation devices may be claimed and released. Also, if an
error occurs, they do only temporarily switch to one of the error states and after having it
fixed they return to their previous state. It is also possible that the device switches to power
save mode if it is not used for a longer period of time. It leaves this state if any command is
issued.
If an error already exists like HardwareError (maybe the device is defective) or a
UserActionError (paper missing etc) then the open succeeds anyway but the status reflects
the error state.
Only a device that is not claimed can be closed and unregistered by the application.

Any device state change is reported by a StatusEvent to the application (except for the first
change from ‘registered_but_not_open’ to ‘Working’ as this is only of interest to the DC
calling the open() which is informed via an OperationCompleteEvent). For details see the
description of the StatusEvent in the ‘Events’ chapter.

Page 12
CWA 13937-1:2000
2.3 Reserving devices for exclusive use

If an application or applet accesses a device it is sometimes necessary to restrict access to
this device for other applications or applets for a certain amount of time. This can be
needed if multiple operations must be done sequentially and not interrupted by operations
from other applications. This is made possible by using a claim() method to lock the
device and a corresponding release() method, which frees the device again.
There is, however, no method in J/XFS which requires the use of the claim/release bracket.

The following sequence diagram outlines the basic concept of claim and release (and also
illustrates nicely the event send mechanism). Please note that the application does not
directly access the Device Service as depicted here but of course issues any calls and
receives any events via their DeviceControl object. The reason the Device Service is
shown here is that it is the coordinating object.

If an application starts the claim request the Device Service queues this request and goes to
a claim_pending state. It will not grant the claim until any operations still in its queue are
finished (3,4,5). After the claim was granted any connected DC is informed via a
StatusEvent (6,7). From the moment the claim request arrives any incoming new requests
from other application (8,9) are queued for execution after the release. Additional claim
requests (14) have to wait for the release of the current claim.
The claim is only granted if a specified timeout has not expired before all other running or
pending operations are completed (as happens in 14 - 17).
Likewise the release must be accompanied by a timeout value which defines how long to
wait until pending operations are finished (18). Only after that the release returns (20) and
the according StatusEvent is sent to every DC (21,22). If more claim requests are in the
queue, the next one is granted (24). If not, every Device Control is free to directly access
the device operations again.

2.4 Remote device access
Accessing a device which is locally connected to the workstation the application or applet
is running on is simple and straightforward. J/XFS, however, also deals with device access

Page 13
CWA 13937-1:2000

to devices which are connected to a remote machine. For the application or applet this
makes no difference to the local access. So, access to the devices can be shared among
several J/XFS clients.
But also there is NO restriction of the number of DeviceControls which are allowed to
connect to a DeviceService (other than system limits); especially it is not possible to
restrict the access to a DS to only one DC.
The architecture is designed in such a way that it keeps the common local-access case
simple but it is powerful enough that devices, no matter where they are attached, can be
accessed identically by the application.
The JxfsDeviceManager knows via its JxfsServer of the existence and availability of the
devices which are available on other machines and can offer them to the application
accordingly.
How are the remote devices identified?
Every device has a unique name on the workstation it is connected to. This is sufficient to
identify it locally. In the case of a remote device this name is augmented by the
workstation name the device is connected to. Although an implementation of J/XFS may
want to use its own format for the unique identification of a device we suggest the
following format: “<devicename>@<hostname>” (i.e. printer2@workstation1.acme.com).
This is a readable format which also allows for simple separation of the two parts of that
identifier.
This identifier is used by the application to request a specific device from the
DeviceManager and also in the repository.

2.5 Asynchronous device input/output and events
As stated in chapter 1.2,Basic operation principles, there are two types of methods within
J/XFS: Synchronous and asynchronous methods. The former ones are always used for
small functions which do not need to access the device, like e.g. querying the version of an
object, querying the device status (which is held in the DeviceService) or repository
access.
Any operation on the device is asynchronous. This is true for both input and output data.
The usual flow is that the application issues a command by calling the appropriate method
in the Device Control (i.e. ReadTracks for a magnetic stripe reader or PrintForm for a
Printer). If the given parameters are not correct, immediately an exception is thrown; if
they are valid the operation is issued asynchronously and an identificationID of type int is
returned.
This identificationID can be used by the application to:
� Stop a running operation by giving the identificationID as a parameter to the cancel()

command.
� Use it to identify the operation in the asynchronously returned IntermediateEvent and

OperationCompleteEvent.
This identificationID is especially important if another asynchronous operation is called
again (possibly with different parameters) before the first one is finished, i.e. has sent its
OperationCompleteEvent. Then the identificationID can be used to distinguish between the
two events.
If an error occurs during the operation, it is terminated and the OperationCompleteEvent is
sent giving the corresponding error code.
The general rule in J/XFS regarding the use of asynchronous methods is:

Whenever the physical device has to be accessed to complete an operation an
asynchronous method is used, whenever only a DeviceService internal property is
queried, a synchronous method is sufficient.

So, e.g. querying the status of a device is synchronous because the status is (after the open)
always known internally in the Device Service.

In some circumstances (e.g. for very small, quick operations) it may occur that an Event is
returned to the application (via the call to one of the <eventType>occurred() methods)
before the method call itself has returned, thus providing the application with an
identificationID. Pitily this cannot be remedied by the J/XFS infrastructure itself as the
same problem may occur because the application is too slow of informing its listener
object of the arrived id.

Page 14
CWA 13937-1:2000

Thus, the application must be prepared to either accept events for which the
identificationID is not yet known and buffer them or prevent such a situation.
One simple and advisable way to prevent such a situation this is to simply declare the
<eventType>occurred() method of the event listener instance "synchronized" and also
synchronize the event provoking call on that instance.
Thus, the event delivery is postponed until the method call has returned.

2.6 Numeric identifiers used in J/XFS
Identifier are used to identify Device Controls, operation types and asynchronous operation
requests. These identifiers are of the int type. The following list shows the types of
identifiers:
� control_id

For each Device Service call the Device Control has to identify itself. This is done by
adding a unique identifier as a parameter to any method call from DC to DS. The
Device Control receives this control_id from the Device Service during registration.

� operationID
This identifier is included in each OperationCompleteEvent and IntermediateEvent. It
identifies the operation it belongs to and is unique for each type of operation.

� identificationID
This identifier is received by the application when issuing an asynchronous operation
request. The identificationID is generated by the Device Service. The results of an
asynchronous operation are sent via an OperationCompleteEvent containing this
identificationID. So, the application can distinguish between results especially after
issuing many operations in a short amount of time.

The following diagram shows how identifiers are used.

2.7 Threads and flow control
In the Java programming language using threads is common. In the case of J/XFS and
applications using it, threads are used to decouple the device handling from the application
logic, because the Device Service must be able to respond to asynchronous events coming
from the attached devices. Furthermore there are some operations (like printing) which
take a long time and it is unacceptable to lock the application while this takes place.

Page 15
CWA 13937-1:2000

So, where are different threads likely used?
Each Device Service method might be called in a separate thread. It is very important to
take this into account when programming a Device Service by programming in a thread-
safe way.
Also, each Device Service implementation will have a number of distinct threads. At least
one is normally used to wait for asynchronous messages from the device, another one is
needed to wait for asynchronous requests from the application and yet another one is used
for event delivery to the application (in order not to block the service). The events
generated in the service are delivered to the control in the thread context of one of the
service’s threads if local.
The Device Control manages the events to be delivered to the application. It has two
separate queues, one for the StatusEvent and the other one for OperationComplete and
Intermediate events. Every new event generated by the Device Service is inserted into one
of these queues by a DC thread. Then, using exactly one separate thread per queue, the
Device Control delivers the events to the application by calling all connected event
listeners (i.e. methods under application control).
An additional feature of the queues is that OperationComplete and IntermediateEvents are
now delivered to the application in exactly the order in which they were generated by the
Device Service.
For the application this means that it must be aware of a foreign thread context (apart from
its own threading model) in its registered listener methods which will be executed in a
different thread context. So, variables and routines called in the event processing method
of the application should be synchronized to avoid unwanted interaction with the
application’s main thread.

The following diagram outlines the different threads involved in the delivery of events:

Each thick black arrow represents one thread. The Device Service generates an event and
delivers it to every Device Control it is connected to (Shown here are three DC’s). The
threads only add the new event to the respective queue in the Device Control and
immediately return to the DS. Now a separate thread running in the DC always picks the
next available event in the queue and delivers it to all application objects which have

IJxfsEventNotification

Device Service

ecb 1

ecb 2

ecb n

...

e n = new StatusEvent()

Application(s)

Device Control 3

Device Control 2

Device Control 1

StatusEvent
Queue

e 1
e 2

e n

...

Listener Queue

l 1

l 2

l n

...

l 1 . statusOccurred(e 1)

l n . statusOccurred(e n)

l 2 . statusOccurred(e 1)

...

ecb 2 . fireStatusEvent(e n)

ecb n . fireStatusEvent(e n)

ecb 1 . fireStatusEvent(e n)

Page 16
CWA 13937-1:2000

registered to receive the Status events (Listener queue) via their listener methods, here:
statusOccurred(). As a result the DS thread is always decoupled from any application level
processing ... a very desirable feature.
As explained above, a second identical queue and delivery thread exists for the
OperationComplete and Intermediate events.

2.8 Queuing
There are several places in the J/XFS architecture where queuing takes place:
� As stated above, each Device Control has two queues where the events are inserted

and each one is read by a single thread which delivers the events to the application.
� As all operations in J/XFS are asynchronous the Device Services internally have to

administer a queue which collects the requests and works on them one after the other.
� If multiple claim requests arrive at the Device Service it must queue them until their

respective timeouts occur and grant the claim to the next queued control after it was
released by the current claim holding control.

2.9 Startup & Shutdown
Prior to use of any device, the device environment must be initialized.
This is done by the first application or applet running in a specific VM on a system. It must
issue a call to the Device Manager (DM.initialize(..)) with some initialization parameters.
The Device Manager then initializes the local as well as the remote infrastructure for use
by the applications. This is done by issuing the start() method for all locally attached
devices.
In special cases this initialization could be done by defining the DM as a service to start up
automatically, so an application or applet does not need to initialize it explicitly. But
usually the application or applet must initialize the J/XFS infrastructure explicitly.
In the case of a separate workstation which only supplies one or more devices for use by
applications running on remote computers, the Device Manager can be automatically
started and configured to only support the given devices. Another possibility for this
scenario would be to have a special miniature application running on this ‘device server’
which perhaps just shows the current status of the devices.

The shutdown of the controlling application or applet is the shutdown of the J/XFS
infrastructure. Upon shutdown the application or applet should tell the Device Manager
about what is going to happen, so that it can shut down all the services it provides. This is
achieved by the application or applet calling DM.shutdown() upon ending.
In this method the DeviceManager calls any instantiated Device Service and Device
Communication objects and instructs them to shut down. They have to inform any of their
peer Device Controls, which have to notice the status change and deactivate any device
access.
There are additional methods in the Device Manager to control Service instantiation and
destruction of local DS’s: start and stop. Using stop the application can intentionally stop
(or shut down) the specified DS only. It can then use start to try to re-start the stopped
Device Service. If the device is accessed locally, a getDevice() call also implicitly issues a
start command if it is not yet started (thus allowing an Activation-on-demand behavior).

For a more detailed description see the explanation of the shutdown() method in the
chapter on the JxfsDeviceManager, the Device Control and the Device Service.

2.10 Using complex devices
It is common that a financial peripheral device consists of more than one subcomponent,
e.g. a statement printer consists of the specialized printing engine and also contains an ID
Card reader of some type and perhaps a small line display. Or, there is a device which
consists of a magnetic card reading device (MSD) as well as a PINPad (PIN).
Usually these devices are accessed via the same connection (IO port), and additional
dependencies may exist.
From the J/XFS point of view these devices are represented by a number of separate
devices which are controlled separately. The device manufacturer writes just a single
Device Service class which contains interfaces for both required J/XFS device types. If an

Page 17
CWA 13937-1:2000

application wishes to use MSD and PIN device mentioned above it must request a separate
MSD Control and a PIN Control. The configuration of J/XFS then maps both devices to
the same service class which is instantiated only once. The single Device Service class can
thus easily synchronize access to the combined devices.
The basic idea behind this is that it should not be necessary to change the application when
2 separate attached devices are replaced by a single complex device.
If two or more devices are used on a call-by-call basis, i.e. without claiming them to lock
the device, using a complex device is identical to using two separate devices.
If one device is claimed, then used and then released before the second device is claimed
no problems arise either. The code would look like:

JxfsMSDControl c=myDeviceManager.getDevice(“CardReader”);
...work with c...
JxfsPINPadControl p=myDeviceManager.getDevice(“PINPad”);
...work with p...

The tricky part occurs when two (or more) combined devices are claimed simultaneously
in order to work with them. A claim() of one of its subdevices would block all subdevices
at once. Thus, a claim to the second subdevice of a complex device will fail as the device is
already claimed:

JxfsMSDControl c=myDeviceManager.getDevice(“CardReader”);
c.open(this);
c.claim(JXFS_FOREVER);
JxfsPINPadControl p=myDeviceManager.getDevice(“PINPad”);
p.open(this);
p.claim(JXFS_FOREVER); // WORKS for separate but
 // fails for complex devices!
...work with c and p...
c. release(); p.release();
c.close(); p.close(); ...

How can the above scenario be solved?
The approach J/XFS takes follows: If a Device Service is programmed for a complex
device then it must have distinct „claim slots“ for each device type it represents.
The Device Service receives the type of a control during the initialization phase (in the
registerControl() method call on page 39). If a claim request comes in from a Device
Control the service now locks only the part of its methods which belong to this device
type. A claim of a Device Control of the other type would then go to a different claim slot
and be granted.

2.11 Failure detection and reaction
As J/XFS provides for access to devices which are connected to another computer, the
subject of failure detection and possible reactions to it is an important issue.

Currently several problem areas are known:
The first one is how to ensure that the central J/XFS dynamic device availability cache is
kept up to date if a workstation breaks down.
For this release of the J/XFS Architecture the following approach is recommended: The
dynamic server cache is updated if a connection request to a workstation failed or is
detected inside the server process. As long as no device is used a possible false entry in this
repository is considered bearable.
The second area of concern is the peer connection between devices. Two
connectionFailure() methods as well as a predefined StatusEvent are provided by J/XFS
which allow a communication layer to inform both the Device Service as well as the
Device Control of a communication breakdown. Detection of such a communication
failure without actual operations going on can be done via a heartbeat mechanism (such
that the connections are checked regularly). During operations a failure is detected
immediately.
A third problem area is to define how to react to breakdowns during an operation (i.e. has
the command been sent, and if no OperationCompleteEvent arrives how to query the
device if the operation was done?). As these are rare special circumstances J/XFS provides
the logging mechanism separate from the event mechanism. In the above failure a system
administrator could look up in the log to find out about the operation’s state. The general
assumption if an OperationCompleteEvent for an issued operation is missing must be that
the operation was not completed.
To further clarify things the following rules apply:

Page 18
CWA 13937-1:2000

1. A network error is detected at the DeviceService side. The DeviceService itself is
informed by the Communication layer via the connectionFailure() method. It must
now do the following:
* Break any claim held by DC in question
* Cancel all pending IOs from this DC
* Remove all EventListeners held by this DC
* Retire the control _id
 (NEVER reuse it .. DC may not know communication was lost)
* Log error message
* Refuse ANY subsequent requests with this Control ID

2. A network error is detected at the clients side in the DeviceControl either by an
exception returned from a method call or via a connectionFailure() method being
called by the communication layer.
It can be expected that there is no use to re-try any calls because such retries should
already have taken place in the communication layer.
The following reaction is expected by the DC:
* Generate and post a remote error status event to the application (This is the only
place where the DC itself must generate an event!).
* Try to log the error message
* As the DS is not available any more it must perform internal "close" and "unregister"
operations
* Go into ‘unregistered’ state, i.e. refuse ANY subsequent requests from the
application.

3. A network error is detected at the application because a StatusEvent is received from
the DC. It must now assume the following:
* Any existing claim request on device is no longer valid.
* All new requests to this Device Control will be rejected, including the getStatus()
 call.
* All pending operations must be assumed cancelled; no separate OC Events will
 be received for these operations!
* Actual device hardware is in unknown state.
* DeviceControl will be auto-closed.
* All EventListener threads will be auto-removed.
* The DeviceControl will be auto-deregistered.
How can it now go on? The application has to repeat the normal device sequence
starting from DeviceManager::getDevice(). If communication is STILL down, this call
will also fail.

2.12 Ensuring device independence

2.12.1 Device dependent mechanisms
One of the main goals of J/XFS is to allow an application to be independent of the make of
the device it is using. If it uses e.g. a Magstripe reader it must not need to bother whether
the physical device is from vendor A or vendor B.
Acknowledging the fact that differences in devices exists, however, and that there may be
scenarios where an application intentionally wants to access device specific functionality,
in turn giving up device independence.
The application must have checked the DeviceService type before it uses device specific
information.
And every DS is required to work even when the application does not analyze this field!

J/XFS provides the following access mechanisms to device specific things:
� extendedErrorCode in the JxfsException

This allows a DeviceService to deliver a specific return code which the application
might analyse and take specific action.

� extendedResult in the OperationCompleteEvent
The same description as above applies here. This field gives the DS the possibility to
report additional results for this specific operation completed with this event.

Page 19
CWA 13937-1:2000

� directIO method
Via this method new functionality can be made available to the application. It is
outlined in detail below.

2.12.2 Vendor specific functionality (directIO)
A vendor may want to add functionality to a device he is offering which is beyond the
scope of J/XFS. If he wants to write a J/XFS compliant Device Service there should be a
generic way to access this additional functionality for the banking application without
sacrificing J/XFS compliance.
This is most easily achieved by using the pre-defined directIO method call.

Assume that there is no device type which allows Text in- and output in J/XFS. Then, as an
example, assume a vendor of a banking printer has added an LCD panel to it where some
information can be displayed to the customer.
When writing the J/XFS Device Service for its printer the vendor has to implement all the
defined properties, methods and events for the printer device service. He decides that some
default texts are displayed on his panel during these operations.
Then, he implements the directIO method to allow an application to control the LCD. In
his document he states that to show something on the LCD the application can use a call to
directIO with a command-parameter of ACME_PRT_SHOW_LCD3 and a data object
(subclassed from JxfsType) which contains the message.
A banking application which knows of this printer can now use the directIO call to show
specific messages on the printer's LCD. Other printers would simply ignore the given
command by returning JXFS_E_NOT_SUPPORTED (which is the default behavior for
this call). Via the getDeviceServiceDescription() method the application can find out
whether or not this is the printer with the LCD panel.
If the new functionality is for data input, then a call to the directIO method would only
activate the possibility of receiving data and return an operationID and later, when the data
arrives, either an Intermediate or OperationComplete event (or both) are sent which the
application can receive (if it has registered successfully beforehand). It contains the
operationId so the application knows that these events belong to the previously issued
directIO command.

2.13 Power Management
In order to save energy and therefore costs many electronic and electric devices support
power save modes. These modes operate in two kind of ways. Either they are using
operating modes that are consuming less energy or other resources and may work slower
but respond at once at a new request or on the other hand they shut themselves or parts of
themselves down to a power save mode where it takes some time to come back into
business (certain response time).

If a financial device or the appropriate device service for this device is able to cope with
the power save mode internally without performance impact to the application it is
encouraged to do so.

But in some cases the application should be aware of the current power mode of a device
to optimize the performance. Imagine a dispenser inside a ATM goes into a power save
mode that takes 30 seconds to come back into operational mode. If now a transaction
starts that involves the cash dispenser and the cash dispenser begins to wake up the
moment it shall begin to work on bank notes then this will have a performance impact of
30 seconds to the transaction. But if the application begins to wake up the cash dispenser
in the moment the customer enters his identification card, there is nearly no performance
degradation for the transaction.

3The numeric value of these constants is left to the device service programmer. It must, however, have a value
above JXFSDIRECTIO_OFFSET.

Page 20
CWA 13937-1:2000

The way power management is achieved is highly device specific. J/XFS does not define a
way to specify when and how to enter power save mode and the details on configuration of
these features, this is left to the Device Service implementations.
There are, however, certain general methods which are defined here so the application is
able to react. They are
� Allowing to query a device’s power save capability – isPowerSaveModeSupported().
� Querying whether or not a device is in power save mode (and thus may take longer to

finish with a following operation) – JxfsStatus, boolean property powerSave
� Actively waking the device up bringing it up to full functionality (Any requested

operation to a device also implicitly wakes it up) – wakeUpFromPowerSave()
� Sending events whenever power save mode is entered or exited – StatusEvents

JXFS_S_POWERSAVEON and JXFS_S_POWERSAVEOFF
For all these functions J/XFS has installed the mentioned mechanisms. Anything which
serves these power management functions has ‘Power save’ in its name, thus making it
easy to spot these things in the J/XFS architecture.
See the remaining chapters for details.

2.14 Updating Firmware in a device
Increasing numbers of modern banking peripherals allow a software-driven firmware
update. As this is likely to become more and more of a commodity, it should be included in
the J/XFS standard.
This is especially important as, via the remote access feature of J/XFS, it enables
significant effort reductions for the service personnel as they need not be physically
present to update the firmware.

Basically there are two different methods of updating the firmware: automatic and
manual.
The automatic case occurs if the Device Service detects a need to update during normal
startup (open) of a device. The exact behavior must be decided by the Device Service class.
As no possibility exists to inform the user about the process, the automatic updating should
not take longer than a couple of seconds, so the user will not think the device is non-
responsive and perhaps turn it off during the update.
The manual update process is under control of the application (either a special J/XFS
enabled program or part of a banking application) which could look like this:

The application has the possibility to
1. Check for availability of a new release of the firmware for a specific device in the

repository.
2. Query the currently installed firmware name and release number from the Device

Service .
3. Have a function to compare whether an update is needed or not (also provided by the

Device Service).

Page 21
CWA 13937-1:2000

4. Issue an update command to the Device Service.
 It is the application's decision how the information is presented to the user and whether or
not an automatic update takes place.
Functionality to enable the above mentioned requirements is embedded in the J/XFS
infrastructure.

2.15 Naming conventions
The following rules are defined to ensure unique naming conventions within J/XFS.
J/XFS itself and programs extending or implementing parts of it are requested to obey to
these rules.
Interfaces:
� Interfaces start with IJxfs, e.g. IJxfsMSDControl.
� Exception to the above: The various XYZConst files start with Jxfs (because they are

not strictly interfaces, but pools of final variables for J/XFS classes).
Classes:
� Classes delivered as part of the standard have a leading „Jxfs” in their name, e.g. the

JxfsDeviceManager, JxfsVersion.
� The Device Controls do not have a ‚Control‘ in their name, giving e.g. JxfsMSD as the

implementation of the IJxfsMSDControl interface.
� Classes which implement a device in the service layer can have any name as long as it

is specific enough that it does not ‘use up’ too much namespace. For instance,
MagStripeReader.java would be a bad name for a specific Device Service.
IBM477xMSD.java would be a correct naming.

� The subclasses of the OperationCompleteEvent are named OCyyyzzzzzEvent, where
yyy is the three character device type identifier (PTR, CDR, etc) and zzzzz describes
the event itself (1-n letters).

Constant definitions:
� The main constants interface file is called JxfsConst.java
� The device type specific constants are named as their respective Control classnames,

but with Const at the end, giving JxfsMSDConst.java for the above example.
� The naming of all Identifiers must be JXFS_X_YYY_ZZZ where

* JXFS is fixed,
* the X identifies the use of the constant and may be one of these
JXFS_O_.. Constants used to identify an operation state (e.g. JXFS_O_PTR_EJECT).

They are used to identify operation return codes in
OperationCompleteEvents and also in IntermediateEvents.

JXFS_I_... Constants used to identify the reason for an IntermediateEvent.
If the same meaning is also used in the OC Events then the appropriate
JXFS_O_... identifier should also be used in IntermediateEvents in order
to avoid having multiple constants with the same meaning.

JXFS_S_... Status change constant definitions.
JXFS_E_... Constants to identify errors in Exceptions, OperationCompleteEvents and

IntermediateEvents (if they report an error condition).
* the YYY is the 3 digit device type identifier like PTR or MSD,
* the ZZZ is the specific code (and may of course be 1-n characters).

For the basic definitions of the above constants see “J/XFS constant codes” on page 59.
Any class or interface, especially those visible to the application (ex: Device Controls)
should obey the JavaBeans naming convention.

2.16 Return values
If within J/XFS a list of things is returned to the user usually the Java Vector data type is
used. A clone of the originating Vector is returned, i.e. adding / removing items to/from the
returned Vector does not influence state of the originating object. Also, the Vector only
reflects the state of the object at the time of the method call.

Page 22
CWA 13937-1:2000
2.17 Security and Encryption

The access control for the device (i.e. the authorization to access a specific function in the
J/XFS API) has to be controlled by the calling application and the network software. In the
current J/XFS Version 1.0 no support for login and user rights administration is supported.

Also, it may be desirable to encrypt all data which is send over the LAN between the
workstations and the server, as well as between the peer-workstations sharing a device
using J/XFS.
This is, however, also not a task defined in the J/XFS Version 1.0. It is rather left to the
TCP/IP installation and add-on security products to ensure that the data transfer is secure.
We assume that a solution to this is or will be available for use without the necessity to
change the J/XFS structure. One possible option here would be to use RMI over SSL.

Page 23
CWA 13937-1:2000

3 Main J/XFS components

3.1 J/XFS packages
J/XFS consists of a number of packages. Each software layer of the architecture is
separated into such a package. Thus, we have a control, a communication and a service
package. As events and exceptions are used in all layers they are put into a separate
package events. In addition to this, the generically used classes are put into a separate
package named general.
Thus, the top-level package decomposition is like this:

The lines represent dependencies between the different packages. The most important
concept here is that the Device Service layer does not depend on the Device Control layer
as only then can the chore of transferring data over a network be invisible to the Device
Service as well as to the application.
 In addition to the packages shown above (which make up the basic J/XFS infrastructure)
additional packages with the service implementations of the hardware manufacturer are
used.

The following table gives an overview of which classes are put into which package:

com.jxfs The base for all J/XFS classes and interfaces
com.jxfs.general This package contains objects used in more than one other

package. These are:
JxfsDeviceManager, Jxfs{Local|Remote}DeviceInformation,
JxfsConfiguration, JxfsServer, JxfsVersion, JxfsLogger, JxfsType,
JxfsStatus, JxfsConst.

com.jxfs.control The device specific access classes for application access.
Contains all the control interface files (IJxfs...Control..).

com.jxfs.control.
<devicename>

One of these sub-packages exists per device type. Currently, these
are PTR, TIO, CDR, MSD, PIN and ALM.
They contain all the device type specific classes which are the
Control classes, the JxfsXXXConst and the JxfsXXXStatus
classes.

com.jxfs.service The device specific service classes. Only contains
all the interface files (IJxfs....) implemented by the Device
Services; the classes implementing them are vendor specific.

Page 24
CWA 13937-1:2000

com.jxfs.
communication

Anything concerned with network communication.

com.jxfs.events The JxfsEvent and its subclasses, all the Listener interfaces which
must be implemented by the application and the
IJxfsEventNotification class as well as the JxfsException.

<vendor specific> The implementations of the Device Service for a specific device
type is not included into one of the jxfs packages but left in a
vendor specific package. The JxfsDeviceManager can be
configured to find those classes.

Page 25
CWA 13937-1:2000

3.2 JxfsDeviceManager
The JxfsDeviceManager (DM) is a static object where device requests are routed to. There
is exactly one DM in each Java VM.
Its main duties are
� Keep lists of devices / services / communication connections.
� Handle service instantiation and connect Device Controls, Device Communication and

Device Services
� Query and write configuration data.
� Shield Device Controls and Device Services from using a specific set of Java APIs for

configuration lookup and object creation (e.g. JSD and JSL) to gain flexibility.
� Make controls and services simpler and more straightforward to program.
� Communicate with a server to request device information on both local and remote

devices (making it transparent for the device layers).
� Install any necessary classes so that other workstations can remotely access the

devices.
� Register the devices which should be accessible by remote applications at the

JxfsServer.
Except for the initialization and finalization phase most applications will not need to use
the DM very often. Access to device specific functionality is solely available through the
respective Device Controls.
The DM is used by the application for the first Device Control generation and for special
purposes such as getting lists of available devices.
The detailed description of the DM’s interface follows.

� static JxfsDeviceManager getReference()
This call returns a reference to the DM in a Java VM. There is exactly one DM in each
Java VM.

� void initialize(String configurationParameters) throws JxfsException
This method must be called by the application to initialize the DM, e.g.
JxfsDeviceManager.getReference().initialize(
 "client1,RMI,srv(2006),backupsrv(2007)");

The parameter must be provided to the DM by the application to inform the DM about
any parameter it needs to successfully initialize itself. This is dependent on the
implementation of the J/XFS infrastructure (and is defined there), but usually this
should be similar to the outline given above.
This parameter is specific for EACH Java VM containing a J/XFS client application.
This means that every application must read this configurationParameter from a
administrator - changeable location.
The string in the sample above contains the unique name of this J/XFS client (client1),
the communications method used to contact the server (RMI) as well as a list of
hostname and ports where to find the server repository in a comma separated list.
As explained in the overview chapter more than one J/XFS client application can run
on a single workstation. Every J/XFS client needs a unique identifier; the workstations
hostname is not sufficient. The first element in the configurationParameters string is
the configKey and is used to find the keys for this workstation in the repository.
If the initialization failed an exception is thrown which specifies the reason.
Possible exceptions are
JXFS_E_REMOTE Network error trying to reach the server
JXFS_E_PARAMETER
_INVALID

Error in the parameter: There was a problem connecting
to the specified server(s).

JXFS_E_NOEXIST Error in the parameter: The server was found but the
identification (configKey) given is unknown.

JXFS_E_ILLEGAL The DM is already initialized, i.e. this call was already
done.

� Vector getDeviceList(int level)
Returns a Vector of JxfsDeviceInformation objects which represent the information
about devices available to this J/XFS client. Level specifies in more detail which

Page 26
CWA 13937-1:2000

devices are reported and can be one of the following constants (Also defined in the
DeviceManager):
JXFS_LEVEL_ACTIVE Active devices in the same process as the application

(application local). A device is active if its
DeviceService is successfully started.

JXFS_LEVEL_
CONFIGURED

Configured devices in the same process as the
application (not necessarily active).

JXFS_LEVEL_
WORKSTATION

The same as JXFS_LEVEL_ACTIVE plus all active
devices in other processes on this workstation.

JXFS_LEVEL_
ALL

JXFS_LEVEL_WORKSTATION and active devices on
any other workstation as well.

� Vector getDeviceListFor(Class control_classname, int level)
Return a list of DeviceInformation objects which represent the available devices of the
given type (identified by the given control classname, e.g. JxfsTIOControl). The level
is the same as in the above call.

� IJxfsBaseControl getDevice(String logical_name) throws JxfsException;
With this method the application requests a device. The logical_name given here can
be queried from a DeviceInformation object with the method getDeviceName().
The returned Device Control object has a connection to its Device Service, but the
device is not opened yet. If the application stops using the device it must be closed (if
it has opened it) and then deregistered with deregisterDevice().
Possible exceptions are
JXFS_E_NOSERVICE devicename/service class unknown or not found
JXFS_E_NOEXIST logical_name unknown
JXFS_E_FAILURE service class failed to initialize.
The application sample code to check for a returned class would be:
IJxfsBaseControl b=JxfsDeviceManager.getReference().getDevice("MSD1");
// Sanity check: Did I really get a JxfsMSD object?

if (b instanceOf JxfsMSD)) {
 JxfsMSD msr = (JxfsMSD)b;
 // do something with the device
 }

If the application wants to use a device, it must call the Device Manager's getDevice()
method. If no error is thrown then this returns a valid reference to a DeviceControl of
the requested type.

What happens internally during such a request?
First, the DM checks if the requested device is attached locally. If yes, it connects the
corresponding DS (or implicitly starts it if it is not yet instantiated), generates a new
DC and returns this to the user.

Page 27
CWA 13937-1:2000

The usual scenario is depicted in the graphic (where also a following open is shown):

� IJxfsBaseControl getDevice(Class control_classname) throws JxfsException;
Here, the application requests a device of type control_classname without specifying a
concrete name. The DM should return a Device Control for the default device of this
type for this J/XFS client or - if no default is configured - to the first such device
found. If the application stops using the device it must be released and then
deregistered with deregisterDevice().
JXFS_E_NOSERVICE devicename/service class unknown or not found
JXFS_E_NOEXIST given control_classname not valid
JXFS_E_FAILURE service class failed to initialize.
The application sample code to use this would be:
JxfsMSD msr=(JxfsMSD)JxfsDeviceManager.getReference()
 .getDevice(JxfsMSD);
// do something with the device

� Serializable getValueForKey(String key) throws JxfsException
This method allows an arbitrary object to be retrieved under the given key from the
repository. It must be either a basic Java data type (String, int, etc.) or a subclass of
JxfsType.
If the key is not found in the repository an exception with JXFS_E_NOEXIST is
thrown.

� void setValueForKey(String key, Serializable value) throws JxfsException
Saves the given object persistently in the repository using the given key. If the key
does not exist, it is created, if it exists, the value is replaced.
To remove a key from the repository, use this method and specify null as the value
parameter.
An exception JXFS_E_ILLEGAL is thrown if the key specified is not allowed. This
can e.g. happen if the key contains invalid characters or if a read-only key with the
same name exists which cannot be overwritten.

� void addKeyValueChangeListener(IJxfsKeyValueChangeListener l, String key)
throws JxfsException
If the application or a Device Control or Device Service want to be informed about
changes that happen to the value of a certain key, they must use this method to
indicate where the change information should be delivered and what key it is
interested in.
They have to implement the IJxfsKeyValueChangeListener interface. This contains
only the method

Page 28
CWA 13937-1:2000

 void keyValueChangeOccurred(String key, Serializable value);
It is called by the Device Manager after registering. Also, the second parameter
provides the new value for the key.

� void removeKeyValueChangeListener(KeyValueChangeListener l)
 throws JxfsException
Remove the given KeyValueChangeListener object from the listening list.

� JxfsVersion getDeviceManagerVersion()
Return the version object for this Device Manager.

� boolean addStatusListener(StatusListener l)
boolean removeStatusListener(StatusListener l)
With these methods the application can register as a listener to receive the
StatusEvents from the DeviceManager (Returning true if the listener was successfully
added or removed).
The DeviceManager informs of general things which are happening in the J/XFS
infrastructure using Status events.
Currently, StatusEvents with the following Id's are defined:
JXFS_S_SHUTDOWN A shutdown was recieved by the DeviceManager (see

below)
JXFS_S_
REMOTEFAILURE

Communication is broken down.

JXFS_S_SERVICE_
STOPPED

A running DeviceService was stopped. In the details
parameter the logical name of the DS is given.

JXFS_S_SERVICE_
STARTED

A stopped DeviceService was started. In the details
parameter the logical name of the DS is given.

� void start(String logical_name) throws JxfsException;
Start the Device Service identified by the given name. The logical_name given here
can be queried from a DeviceInformation object with the method getDeviceName().
If the device is already started this method immediately returns.
A start is called by the DeviceManager during initialization phase and is also
implicitly done during a getDevice call on the local machine. So, this method is
reserved for administration purposes.
This method only works for devices attached locally to this DM (i.e. where the DS is
running in the same JavaVM as the DM).
JXFS_E_NOSERVICE devicename/service class unknown or not found
JXFS_E_NOEXISTS given logical_name not valid
JXFS_E_FAILURE service class failed to initialize.

� void stop(String logical_name) throws JxfsException;
Stop the device with the given name. The logical_name given here can be queried
from a DeviceInformation object with the method getDeviceName().
The Device Manager does the following: First, the DeviceManager removes any
entries for this device from the central J/XFS server. Then it calls the shutdown
method of all the local Device Service objects. The Device Services in turn shut down
the physical device, write any remaining persistent data into the repository and send a
StatusEvent(JXFS_S_SHUTDOWN) to any remaining connected Device Controls,
which have to notice the status change and deactivate any device access (See the
Device Service method description for details).
This method fails if the given name is unknown by throwing a JxfsException with
code JXFS_E_NOEXIST or if the DS was not started.
This method is reserved for administration purposes; the DM uses this method to shut
down any DS during a shutdown.

� void shutdown();
Prepare the shutdown of the J/XFS infrastructure. The Device Manager calls the above
stop() method for all local devices. Finally it deactivates the logger by calling its
shutdown() method, disables itself and returns control to the application.

Page 29
CWA 13937-1:2000

3.3 Device Control
The interfaces and methods in the Device Control are the tools the application uses to gain
access to a financial device. It consists of the interface hierarchy for the supported devices
and their implementation.

3.3.1 Object model
Depicted here are only the device classes, i.e. the interfaces and classes corresponding to
the different device types which are supported.
As displayed in the picture below there is a common base interface for all the controls,
IJxfsBaseControl. The different types of devices are reflected by having different
subinterfaces, e.g. IJxfsPrinterControl. If the devices of this type have more subtypes, then
an additional layer of interfaces is provided (i.e. IJxfsPassbookPrinterControl,
IJxfsJournalPrinterControl etc.).

In the following only the IJxfsBaseControl interface is described in detail; all the
subclasses of this interface are described in the respective device class documentation.

Page 30
CWA 13937-1:2000
3.3.2 IJxfsBaseControl

Public methods
The methods all Device Controls must support and which define the basic device behavior
are:
� int open() throws JxfsException;

This method must be the first method an application calls in a newly generated Device
Control in order to use all other functions. Exceptions are the addXXXListener
methods and getStatus()). A call to another methods throws a JxfsException with code
JXFS_CLOSED.
This is the first time the device is physically accessed. It is asynchronous4 and returns
an identificationID. After the open completed an OperationComplete event with
operationID = JXFS_O_OPEN and the given identificationID is sent to the
application. The result is either JXFS_RC_SUCCESSFUL or one of the error codes.
After the open operation has been issued (but even before the OC Event has arrived)
any other method is callable. Operation requests are queued for execution, and if the
open fails, they are discarded.
But, of course the correct behavior for an application is rather to wait for the OCEvent
of the open() and only then start using the device.
The open() must only fail for severe, unrecoverable errors. Minor defects should be
noticed by the DS but the open() should succeed. For details on this please also see the
device specifications detailing more on the correct open() behaviour.
Even if the open() fails, Status events are generated to inform the application that the
Device status has changed. The application may then re-try to open the device.
Possible exception codes are:
JXFS_E_UNREGISTERED Device is not registered at the Device Manager. It

must either be instantiated using new(), which is not
allowed, or has already been deregistered at the
Device Manager which disables this control
completely.

JXFS_E_OPEN Device is already opened.
JXFS_E_REMOTE Communication error during remote call

� int close() throws JxfsException;
Finishes the usage of the device by the application. If this is the last connected Device
Control to issue close, this method disables further use of the device and releases any
resources currently in use. All properties are reset to their initial default state.
The device must be released before close() is called.
This method is asynchronous and returns an identificationID. After that it returns an
OperationCompleteEvent with operationID = JXFS_O_CLOSE. the given
identificationID and a result (most likely JXFS_RC_SUCCESSFUL).
Possible exception codes are:
JXFS_E_UNREGISTERED Device is not registered at the DM.
JXFS_E_CLOSED Device has not been opened yet.
JXFS_E_CLAIMED Device is still claimed.
JXFS_E_REMOTE Communication error during remote call.

� boolean claim(int timeout) throws JxfsException;
This method attempts for the time specified by timeout (specified in milliseconds) to
gain exclusive access to the device. This method returns control to the application
when the claim is granted or when the timeout expires.
A claim is granted if no other Device Control has claimed the device and only after all
pending operations are finished. All the operation requests are queued. As soon as a
claim request is granted at the Device Service any operation requests from the DC
holding the claim are the only ones which are processed. Operations from other DC’s
are queued until after the release is done.

4 The reason that open and close are defined as asynchronous methods is that they also access the device. The
generic J/XFS rule for device access requires asynchronous behavior (see page 13).

Page 31
CWA 13937-1:2000

If timeout is equal to JXFS_FOREVER (-1) then the operation waits as long as needed
for the device to become available.
The return value is equal to TRUE if claim() succeeds. The return value is equal to
FALSE if claim() has timed out.
An application should release the claimed device as soon as possible.
Possible exception codes are:
JXFS_E_UNREGISTERED Device is not registered at the DM.
JXFS_E_CLAIMED Device is already claimed by caller.
JXFS_E_CLOSED The open call has not been issued yet.
JXFS_E_REMOTE Communication error during remote call.
JXFS_E_PARAMETER_IN
VALID

Invalid value for timeout parameter

� boolean release(int timeout) throws JxfsException;
Removes exclusive access to the device. It waits for all running asynchronous
operations from the claiming DC to finish, but only up to “timeout” milliseconds.
Then the queued operations from other DC’s are executed. If another claim() requests
arrives at execution position it will be granted. This method returns TRUE if the
release was successful, and FALSE if device operations are still pending after
“timeout” milliseconds. In that case the release was NOT done and the DC has to re-
issue this command (possibly after canceling an operation which ‘hangs’).
Possible exception codes are:
JXFS_E_UNREGISTERED Device is not registered at the DM.
JXFS_E_CLOSED Device has not been opened yet.
JXFS_E_NOTCLAIMED Device was not claimed by caller.
JXFS_E_REMOTE Communication error during remote call
JXFS_E_PARAMETER_IN
VALID

Invalid value for timeout parameter

� void cancel(int identificationID) throws JxfsException;
This method attempts to stop the operation specified by the identificationID. If it can
do so, an OperationCompleteEvent is sent which indicates that the operation was
cancelled.
The identificationID is returned by the Device Control to the application by any
asynchronous operation request. If an invalid Id is presented here, or the operation
with this Id has already finished, no action takes place.
 Possible exception codes are:
JXFS_E_UNREGISTERED Device is not registered at the DM.
JXFS_E_CLOSED Device has not been opened yet
JXFS_E_REMOTE Communication error during remote call

� JxfsStatus getStatus() throws JxfsException;
This method returns a JxfsStatus object which contains the current status of the J/XFS
device. Every device can return a device specific JxfsStatus object that extends the
JxfsStatus (e.g. JxfsPrinterStatus etc.). For detailed information see the separate
chapter on the JxfsStatus object.
Usually, it is not a JxfsStatus object returned here but one of its subclasses, depending
on which device type is queried.
Possible exception codes are:
JXFS_E_UNREGISTERED Device is not registered at the DM.
JXFS_E_REMOTE Communication error during remote call

� boolean addIntermediateListener(IntermediateListener l)
boolean addOperationCompleteListener(OperationCompleteListener l)
boolean addStatusListener(StatusListener l)
These methods are used by the application to register as a listener to receive the given
type of events. Returns true if the listener was registered successfully.

Page 32
CWA 13937-1:2000

� boolean removeIntermediateListener(IntermediateListener l)
boolean removeOperationCompleteListener(OperationCompleteListener l)
boolean removeStatusListener(StatusListener l)
These methods are used by the application to register as a listener to receive the given
type of events. Returns true if the listener was removed.

� String getDeviceName();
Get the unique device name for this device (Type and distinction between similar
devices, e.g. port name). Used to identify the device. This is the logical name key
given in the configuration repository.

� JxfsVersion getDeviceControlVersion();
Return the version object of this Device Control. See the chapter on versioning for a
detailed explanation.

� JxfsVersion getDeviceServiceVersion() throws JxfsException;
Return the version object of this Device Service. See the chapter on versioning for
detailed explanation.
Possible exception codes are:
JXFS_E_UNREGISTERED Device is not registered at the DM.
JXFS_E_REMOTE Communication error during remote call

� String getPhysicalDeviceDescription() throws JxfsException;
The physical device description, e.g. „Acme Magstripe Reader Model 36 subtype 5 (c)
1997 Acme corp.”
Possible exception codes are:
JXFS_E_UNREGISTERED Device is not registered at the DM.
JXFS_E_CLOSED Device has not been opened yet
JXFS_E_NOHARDWARE Device is not connected to the workstation
JXFS_E_REMOTE Communication error during remote call

� String getPhysicalDeviceName() throws JxfsException;
The physical device’s name, e.g. „Acme MSD 36/5”
Possible exception codes are:
JXFS_E_UNREGISTERED Device is not registered at the DM.
JXFS_E_CLOSED Device has not been opened yet
JXFS_E_NOHARDWARE Device is not connected to the workstation
JXFS_E_REMOTE Communication error during remote call

� boolean updateFirmware() throws JxfsException;
Asynchronous function to trigger a firmware update. Returns TRUE if the update
process could be started. Delivers an OperationCompleteEvent with operationID =
JXFS_O_UPDATEFIRMWARE and a result when finished. The identificationID is
not used because only one update can be active at any time.
JXFS_E_UNREGISTERED Device is not registered at the DM.
JXFS_E_CLOSED Device has not been opened yet
JXFS_E_NOHARDWARE Device is not connected to the workstation
JXFS_E_FIRMWARE Nothing to update / available firmware does not

match.
JXFS_E_NOT_SUPPORTED Operation not supported by this device.
JXFS_E_REMOTE Communication error during remote call.

� int getFirmwareStatus() throws JxfsException;
Checks the firmware in the device against the one found in the repository and return:
OK_NEWER Firmware in repository is newer than firmware in device.

Update possible.
OK_OLDER Firmware in repository is older (!) than firmware in device.

Update possible (but not recommended).

Page 33
CWA 13937-1:2000

OK_OTHER5 Firmware in repository has a different functionality, but an
update is possible.

NO_SOURCE Update not possible, no firmware found in repository.
NO_MATCH Update not possible, firmware in repository not correct for

this device.
NO_SUPPORT No firmware update possibility with this device.

The following exceptions can occur:
JXFS_E_NOHARDWARE Device is not connected to the workstation
JXFS_E_UNREGISTERED Device is not registered at the DM.
JXFS_E_CLOSED Device is closed
JXFS_E_REMOTE Communication error during remote call

� JxfsVersion getDeviceFirmwareVersion() throws JxfsException;
JxfsVersion getRepositoryFirmwareVersion() throws JxfsException;
Return JxfsVersion objects informing about the loaded and available Versions of the
firmware in the device.
Possible exception codes are:
JXFS_E_UNREGISTERED Device is not registered at the DM.
JXFS_E_CLOSED Device has not been opened yet
JXFS_E_NOT_SUPPORTED Operation not supported by this device.
JXFS_E_REMOTE Communication error during remote call

� boolean isPowerSaveModeSupported() throws JxfsException
Returns true if the attached device is capable of going to and returning from a power
save mode.
JXFS_E_UNREGISTERED Device is not registered at the DM.
JXFS_E_CLOSED Device is closed
JXFS_E_REMOTE Communication error during remote call

� int wakeUpFromPowerSave() throws JxfsException
This method can be used by the application to actively request that the device becomes
active again. It initiates the wakeup (if needed) and returns immediately. The int that is
returned specifies the average time in seconds needed to get back to an active state (or
–1 if n/a). If the device is powered up again a StatusEvent with
JXFS_S_POWERSAVEOFF is sent.
JXFS_E_UNREGISTERED Device is not registered at the DM.
JXFS_E_CLOSED Device is closed
JXFS_E_REMOTE Communication error during remote call

� int directIO(int command, JxfsType serializable)
 throws JxfsException;
This method gives an application the means to access device specific functions which
only apply to a specific physical device. The application can check for the availability
of the special hardware e.g. via the getDeviceServiceDescription() method.
As the device may reside on another machine, the subclass of JxfsType containing the
data must be serializable.
The service itself can either synchronously work on the command and return
immediately or work asynchronously and notify the application via the usual
Intermediate and OperationComplete events (with special codes) during and after
completion.
The default behavior of any services not having additional commands is to throw a
JXFS_E_NOTSUPPORTED exception.

5What's the difference between version and functionality?
It could be the same firmware, but another version, i.e. it is the firmware for a chip card reader with German
ZKA standards, but a newer version. Or it could be a firmware with other functionality, i.e. the firmware for a
French chip card shall be loaded, but the chip card reader currently contains the firmware for the German ZKA
standard.

Page 34
CWA 13937-1:2000

For an exact description of how to use this method see the explanation in the chapter
on 'Vendor specific functionality'.
Possible exception codes are:
JXFS_E_UNREGISTERED Device is not registered at the DM.
JXFS_E_CLOSED Device has not been opened yet
JXFS_E_CLAIMED This method is not available at this time because the

device is currently claimed for exclusive access by
another control.

JXFS_E_NOHARDWARE Device is not connected to the workstation
JXFS_E_NOTSUPPORTED Operation not supported by this device
JXFS_E_REMOTE Communication error during remote call

� void deregisterDevice() throws JxfsException;
This method must be used by the application to inform the DeviceControl that is will
no longer be used.
This allows the DC to remove the connection to the DeviceService and free up any
allocated resources.
Any method of the DC which needs to access the Device Service from now on only
returns an JXFS_E_UNREGISTERED exception.

Internal methods
There are additional methods necessary to successfully connect the Device Control to its
Device Service and the Device Manager. They are only for J/XFS internal use and are only
briefly outlined here:
� void registerService(IJxfsBaseService myService, JxfsDeviceInformation di)

throws JxfsException;
This method is used by the Device Manager to initialize the Device Control by
providing a reference to the service object itself. The Device Manager also provides
the appropriate Device Information for the DC’s use.

� void connectionFailure();
This method is called by any communication layer to inform the Device Control that
the connection to the DS is broken.
The Device Control now has to approve this fact by using its deregisterService()
functionality and must send the application a StatusEvent with
JXFS_S_REMOTEFAILURE.
The exact details of the connection failure are written to the logger by the
communication layer.

Page 35
CWA 13937-1:2000

3.4 DeviceService
In the Device Service layer the interfaces for the hardware vendor’s (HV) device drivers
are defined. In order to be compliant an HV must implement the interface.
If possible, it should be done in 100% pure Java. Note that the CommAPI is not yet
available for all platforms, and there are some services that may use other interfaces to
access the device. One alternative could be JNI, the Java Native Interface. For each Device
Control class there is a corresponding Device Service interface which has to be
implemented in order to access the physical hardware.

3.4.1 Object model

The diagram depicts the inheritance tree of the device service interface classes. Also shown
are some of the available mixin interfaces to add special functionality (e.g. the support for
motorized card interface for the MagStripe and ChipCard devices). These are the ones
which do not inherit from the IJxfsBaseService interface.
All the methods in the control interfaces are reflected in the methods of the service classes.
The Device Service class must synchronize access to it from multiple Device Controls and
guarantee that after a successful claim any operation the Device Control that got the claim
does is sequencial and precedes any other arriving requests. In order to support control
identification for event delivery more easily, an additional parameter (int control_id) is
passed into every method as the last parameter. The Device Control gets this identifier
from the Device Service after registering there. If the device is claimed by a control the
service class can thus lock out any other accessing control.

Page 36
CWA 13937-1:2000

In the case of complex devices (which are devices that implement more than one J/XFS
device type in a single service), an additional claim() always succeeds if it is issued by a
control that represents a different device but is also held by the control issuing the original
claim. This means that a service that represents more than one subdevice allows the
claiming of each subdevice unless there is only one claim() method in the service. See the
definition of claim below and in the Device Control description.

3.4.2 IJxfsBaseService
The methods all services must support and which define the basic device behavior are:
� int open(int control_id) throws JxfsException;

This method must be the first method a control (identified by control_id) calls in a
newly generated Device Control in order to use all other functions. Exceptions are the
addXXXListener methods and getStatus()). A call to another methods throws a
JxfsException with code JXFS_CLOSED.
This is the first time the device is physically accessed. It is asynchronous6 and returns
an identificationID. After the open completed an OperationComplete event with
operationID = JXFS_O_OPEN and the given identificationID is sent to the
application. The result is either JXFS_RC_SUCCESSFUL or one of the error codes.
After the open operation has been issued (but even before the OC Event has arrived)
any other method is callable. Operation requests are queued for execution, and if the
open fails, they are discarded.
But, of course the correct behavior for an application is rather to wait for the OCEvent
of the open() and only then start using the device.
If the OC event returns success the device is connected to the workstation and device
status is correct.
The open() must only fail for severe, unrecoverable errors. Minor defects should be
noticed by the DS but the open() should succeed. For details on this please also see the
device specifications detailing more on the correct open() behaviour.
Even if the open() fails, Status events are generated to inform the application that the
Device status has changed. The application may then re-try to open the device.
The following general exceptions are possible (in addition to any device specific
exception codes):
JXFS_E_OPEN Device is already opened.
JXFS_E_REMOTE Communication error during remote call

� int close(int control_id) throws JxfsException;
This method closes the device for the DC’s usage. If no other control is using it (i.e.
there is no other Control that has issued an open() call), then the device is also
physically closed (i.e. shutdown or deactivated).
This method is asynchronous and returns an identificationID. After that it returns an
OperationCompleteEvent with operationID = JXFS_O_CLOSE. the given
identificationID and a result (most likely JXFS_RC_SUCCESSFUL).
JXFS_E_CLAIMED Device is still claimed.
JXFS_E_CLOSED Device is already closed
JXFS_E_REMOTE Communication error during remote call

� boolean claim(int timeout, int control_id) throws JxfsException;
Try to claim the device for exclusive use. See the explanation on claim in the Device
Control chapter as well as the section on ‘Reserving devices for exclusive use’.
Claim() returns TRUE, if performed successfully or FALSE if not.
Possible exception codes are:
JXFS_E_CLAIMED Device is already claimed by caller.
JXFS_E_CLOSED Device is closed
JXFS_E_REMOTE Communication error during remote call
JXFS_E_PARAMETER_I
NVALID

Invalid value for timeout parameter

6 The reason that open and close are defined as asynchronous methods is that they also access the device. The
generic J/XFS rule for device access requires asynchronous behavior (see page 13).

Page 37
CWA 13937-1:2000

� boolean release(int timeout, int control_id) throws JxfsException;
Removes exclusive access to the device. It also causes the queue of waiting claim()
requests to be checked and will result in the longest waiting request to be granted. The
control_id identifies the control. This method returns to the application when the
operation is complete. If timeout occurs, e.g. an operation is still pending, FALSE is
returned.
Possible exception codes are:
JXFS_E_NOTCLAIMED Device was not claimed by caller.
JXFS_E_CLOSED Device is closed
JXFS_E_REMOTE Communication error during remote call
JXFS_E_PARAMETER_I
NVALID

Invalid value for timeout parameter

� void cancel(int identificationID, int control_id) throws JxfsException;
This method attempts to restore the device and its service back to the conditions before
the operation was called, that has to be cancelled. An attempt will be made to stop the
operation specified by the identificationID and to cancel any corresponding events that
have not yet been reported to registered listeners. This method will try its best to
cancel the specified operation. Even if there is no corresponding operation for the
identificationID or the operation can not be cancelled, no exception will be thrown. If
cancel() ends with success an OperationCompleteEvent will be sent. The control_id
identifies the control.
Possible exception codes are:
JXFS_E_NOHARDWARE Device is not connected to the workstation
JXFS_E_CLOSED Device is closed
JXFS_E_REMOTE Communication error during remote call

� JxfsStatus getStatus(int control_id) throws JxfsException;
This method returns a JxfsStatus object that reports the current status of the J/XFS
device. Every device usually returns a device specific JxfsStatus object that extends
the JxfsStatus (e.g. JxfsPrinterStatus etc.).
Possible exception codes are:
JXFS_E_CLOSED Device is closed
JXFS_E_REMOTE Communication error during remote call

� JxfsVersion getDeviceServiceVersion(int control_id) throws JxfsException;
Return the version information object of the Device Service.
Possible exception codes are:
JXFS_E_REMOTE Communication error during remote call

� String getPhysicalDeviceDescription(int control_id) throws JxfsException;
The physical device description, e.g., „Acme Magstripe Reader Model 36 subtype 5
(c) 1997 Acme corp.”
Possible exception codes are:
JXFS_E_NOHARDWARE Device is not connected to the workstation
JXFS_E_CLOSED Device is closed
JXFS_E_REMOTE Communication error during remote call

� String getPhysicalDeviceName(int control_id) throws JxfsException;
The physical device’s name, e.g., „Acme MSD 36/5”
Possible exception codes are:
JXFS_E_NOHARDWARE Device is not connected to the workstation
JXFS_E_CLOSED Device is closed
JXFS_E_REMOTE Communication error during remote call

� boolean updateFirmware(int control_id) throws JxfsException;
Asynchronous function to trigger a firmware update. Returns TRUE if the update
process could be started. Delivers an OperationCompleteEvent with operationID =

Page 38
CWA 13937-1:2000

JXFS_O_UPDATEFIRMWARE and a result when finished. The identificationID is
not used because only one update can be active at any time.
JXFS_E_CLOSED Device has not been opened yet
JXFS_E_NOHARDWARE Device is not connected to the workstation
JXFS_E_FIRMWARE Nothing to update / available firmware does not

match.
JXFS_E_NOT_SUPPORTED Operation not supported by this device.
JXFS_E_REMOTE Communication error during remote call

� int getFirmwareStatus(int control_id) throws JxfsException;
Checks the firmware in the device against the one found in the repository and return:
OK_NEWER Firmware in repository is newer than firmware in device.

Update possible.
OK_OLDER Firmware in repository is older (!) than firmware in device.

Update possible (but not recommended).

OK_OTHER7 Firmware in repository has a different functionality, but an
update is possible.

NO_SOURCE Update not possible, no firmware found in repository.
NO_MATCH Update not possible, firmware in repository not correct for

this device.
NO_SUPPORT No firmware update possibility with this device.

The following exceptions can occur:
JXFS_E_NOHARDWARE Device is not connected to the workstation
JXFS_E_CLOSED Device is closed
JXFS_E_REMOTE Communication error during remote call

� JxfsVersion getDeviceFirmwareVersion(int control_id) throws JxfsException;
JxfsVersion getRepositoryFirmwareVersion(int control_id) throws
JxfsException;
Return JxfsVersion objects informing about the loaded and available Versions of the
firmware in the device. If the operation is not supported the according exception is
thrown.
Possible exception codes are:
JXFS_E_NOHARDWARE Device is not connected to the workstation
JXFS_E_NOT_SUPPORTED Operation not supported by this device.
JXFS_E_CLOSED Device is closed
JXFS_E_REMOTE Communication error during remote call

� boolean isPowerSaveModeSupported(int control_id) throws JxfsException
Returns true if the attached device is capable of going to and returning from a power
save mode.
JXFS_E_CLOSED Device is closed
JXFS_E_REMOTE Communication error during remote call

� int wakeUpFromPowerSave(int control_id) throws JxfsException
This method can be used by the application to actively request that the device becomes
active again. It initiates the wakeup (if needed) and returns immediately. The int that is
returned specifies the average time in seconds needed to get back to an active state (or
–1 if n/a). If the device is powered up again a StatusEvent with
JXFS_S_POWERSAVEOFF is sent.
JXFS_E_UNREGISTERED Device is not registered at the DM.
JXFS_E_CLOSED Device is closed

7What's the difference between version and functionality?
It could be the same firmware, but another version, i.e. it is the firmware for a chip card reader with German
ZKA standards, but a newer version. Or it could be a firmware with other functionality, i.e. the firmware for a
French chip card shall be loaded, but the chip card reader currently contains the firmware for the German ZKA
standard.

Page 39
CWA 13937-1:2000

JXFS_E_REMOTE Communication error during remote call

� int directIO(int command, JxfsType serializable,
int control_id) throws JxfsException;
This method gives an application the means to access device specific functions which
only apply to a specific physical device.
For an exact description about the functionality see the description of the directIO in
the Device Control chapter and the explanation in 'Vendor specific functionality'.
The default behavior of any services not having additional commands is to totally
ignore this method by returning FALSE.
Possible exception codes are:
JXFS_E_CLOSED Device is closed
JXFS_E_CLAIMED This method is not available at this time because the

device is currently claimed for exclusive access by
another control.

JXFS_E_NOHARDWARE Device is not connected to the workstation
JXFS_E_NOTSUPPORTED Operation not supported by this device
JXFS_E_REMOTE Communication error during remote call

There are a small number of additional methods which are used by the Device Manager to
initialize the Device Service:

� void initialize(JxfsLocalDeviceInformation your_info) throws JxfsException
This method is used by the Device Manager to deliver the detailed device information
to the service.
Possible exception codes are:
JXFS_E_PARAM_INVALID The given parameter is invalid.

� int registerControl(String device_control_type, IJxfsEventNotification
callbacks_implementing_control) throws JxfsException;
This method must be the first method that is called by the Device Control in order to
register for events and identify the control during all method calls. The Device Service
must keep a list of all connected controls to deliver events and check the state of the
registered controls (has opened the service, has claimed the service). As long as any
useful information can be retrieved from the Device Service it should be allowed to
start. So, e.g. even if no hardware device is attached the service should be started, but
the status should then be JXFS_S_HARDWAREERROR, as it still may be desirable
to issue some other options. In this case, during the following open() a
JXFS_E_NOHARDWARE is returned. The return value is an unique id identifying
the control registering for this service.
The EventCallback object given here may also be a Device Communication object and
not the Device Control itself. The device_control_type parameter given here is the
name of the Device Control interface class (i.e. “IJxfsALMControl”) and allows a
Device Service which implements a complex device to identify which ‘part’ of the
device the DC wants to access8.
The returned value is greater or equal than JXFS_VALID_CONTROLID = 2.
Possible exception codes are:
JXFS_E_REMOTE Communication error during the method call.
JXFS_E_PARAMETER_
INVALID

A parameter was null or otherwise invalid.

JXFS_E_EXISTS Specified Control is already registered.

� void deregisterControl(int control_id) throws JxfsException;
This method must be the last method a Device Control object (identified by
control_id) calls in a device service to deregister for events.
Possible exception codes are:

8 We cannot use a direct reference to the Device Control class here because of the possibility of network
transfers which hide the originating type of the class from the DS.

Page 40
CWA 13937-1:2000

JXFS_E_OPEN Device is still opened.
JXFS_E_REMOTE Communication error during remote call

� void connectionFailure(int control_id);
This method is called by any communication layer to inform the Device Service that
the connection to the Device Control is broken.
The Device Service now has to approve this fact by using its deregisterControl()
functionality.
The exact details of the connection failure are logged to the logger by the
communication layer.

� void shutdown() throws JxfsException;
This method is used by the Device Manager to deactivate a Device Service. It should
be implemented by the DS in a way to guarantee that it always succeeds (shouldn’t get
stuck).
The DS ends the current job (if not possible it terminates it) and throws away all the
pending jobs (without sending OC Events). Then it shuts down the physical device
and writes any remaining persistent data into the repository.
Finally, it sends a StatusEvent with the status JXFS_S_SHUTDOWN to all registered
Device Controls. They have to delete their reference to the Device Service and disable
themselves (i.e. always return JXFS_E_UNREGISTERED out of any operation from
now on). This event is then propagated to the application by the DC’s.
Possible exception codes are:
JXFS_E_REMOTE Communication error. Probably not all remote

DeviceControls could be informed.

Page 41
CWA 13937-1:2000

3.5 Device Communication
The Device Communication package implements the peer-to-peer transportation layer to
enable device sharing.
This layer provides a Device Service-like API to the top (i.e. to the Device Control) and a
Device Control-like API to the bottom (i.e. to the local Device Service). Thus, it serves as
an additional indirection layer to hide the network communication for the Control and
Service objects.

Application

DeviceControl

DeviceCommunication

DeviceService

DC Api

DS Api

DC Api

DS Api

It implements the Device Service interface for the Device Controls to use. For the
DeviceService it implements the same interface as the Device Controls do -- which is
mainly the IJxfsEventNotification - interface.
For the simpler case of only local device access, the Device Communication layer may be
omitted and the JxfsDeviceManager is reduced to an interface to a registry (JSD, a file or
other available storage).

The above chart tries to give a short sketch of how the communication classes enable the
sharing of devices across a network.

To the Device Control the Device Communication looks exactly like a Device Service, and
to the Device Service on the other side of the connection the Device Communication looks
exactly like a Device Control.

The existence of a network communication layer must not be known to the application.
The J/XFS architecture, however, has some features to enable this communication layer.

Client2Client1

Device
Control

Device
Communication

Device
Communication

Device
Service

Phys. device

Page 42
CWA 13937-1:2000

Probably the most important feature is that all operations of the devices are designed to be
idempotent. This means that to issue an operation any relevant parameters are usually
given in the same method call, there is no requirement that for a single operation multiple
method calls are necessary. This minimizes the effort for error handling which needs to be
done in a communication layer as well as in the application.

Page 43
CWA 13937-1:2000

4 Exceptions and Events
J/XFS has several means to deliver information to the application: Return codes,
exceptions or events.
Return codes are only used if very simple return information is presented to the
application, generally if only one parameter is needed. As in most object-oriented designs,
this parameter should not be misused to deliver information about errors (e.g. returning a
String and defining that if it contains "ERROR" then an error occurred would be extremely
bad practice).
In such a situation an Exception should be used. If for example a parameter of a method
call is illegal (and this is detected very early in the method call) then a JxfsException with
error code JXFS_E_PARAMETER_INVALID should be thrown.
Events are used by the asynchronous methods and can be sent at any time. The following
duties are assigned to the events:
1. Notify the application of intermediate results during the running operation (e.g.

sending the single keystrokes from a keyboard).
2. Notify the application of asynchronous operation completion (i.e. track read). This

may be successful completion as well as abortion of the operation due to an error.
3. Inform the application of status changes (e.g. busy, offline) and special conditions

(e.g. threshold values reached such as paper low)
To satisfy the above duties the following categories of events exist:
1. The IntermediateEvent (I) is sent whenever a meaningful intermediate result is

available for the running asynchronous operation. In some cases this may even be after
the OC event (E.g. after an operation is completed the media must be taken by the
customer from the output tray. When this happens a MediaTaken Event is sent)!.

2. The OperationCompleteEvent (OC) is sent whenever an asynchronous operation is
completed. The return code depends on whether the operation was successful, partially
successful or a failure. For the operations which return data it is possible to have
several sub-classes of this event (containing the additional data and its access
methods). They all start with the letters „OC“, e.g. OCReadTrackEvent.

3. The StatusEvent (S) is sent whenever device status changes.

The application itself can decide whether or not it is interested in these event messages
since it must specifically register to receive the events. It can register for each of the
different event types.

As outlined in the chapter on object instantiation, multiple Device Controls can be
connected to the same Device Service. The following rules apply regarding which event is
sent to which Device Control:
1. The IntermediateEvent and OperationCompleteEvent are sent ONLY to the Device

Control which has started the currently running operation.
2. Usually the StatusEvent is sent to all the connected Device Controls to inform the

DC’s of the generic Status changes a device goes through.

As a common guideline on when to use Exceptions vs. Events it can be said that, as
Exceptions are a more direct way to inform the application of some error condition they
are used in preference to Events.
But, as in J/XFS all the methods involving the device are asynchronous, there is, apart
from instant parameter checking etc., no other way to inform the application than via
events.

Please also note that currently there is no such feature as returning some interaction values
back to the Device Service (such as continue / retry / cancel). As banking devices are very
sensitive to the completion of an operation, an operation which encounters for example an
out of paper condition is cancelled and must be re-issued by the application (after action
like refilling the device with paper was taken).

There is intentionally no such event like an ErrorEvent. Any information the application
needs in the case of an error is the error code. This is delivered via the appropriate
OperationCompleteEvent. The details regarding the error are only of interest for a

Page 44
CWA 13937-1:2000

supervisor application which can gather this information from the Logger. See the chapter
on ”Tracing and error logging” on page 54 for details.

4.1 Exceptions
The standard exception within J/XFS is the JxfsException. It is thrown wherever an
exception is needed and contains the following parameters (all except errorCode may be
empty:
Parameter Type Meaning
errorCode int The error code. One of the defined JXFS_E_...

codes.
errorCodeExtended int An extended error code. This can be a system or

device dependent error code.
description String Textual description of the error.

origException Exception The original exception which was caught and
replaced by this JxfsException. A standard
sample would be that a RemoteException is
caught and a new JxfsException with error code
JXFS_E_REMOTE is created. Then the original
exception is put into it – if the application wants
to analyze the exception further it can get it
from here.

The code for JxfsException is shown below:

///
//
// JxfsException
//
// Exception class used to report all J/XFS errors.
//
///
package com.jxfs.events;

public class JxfsException extends java.lang.Exception
{
 /* Some utility constructors to allow some parameters
 to be omitted. If description is not directly given
 it is filled with errorCode and errorCodeExtended. */
 public JxfsException(int errorCode)
 {
 this(errorCode, 0, "" + errorCode, null);
 }
 public JxfsException(int errorCode, int errorCodeExtended)
 {
 this(errorCode, errorCodeExtended,
 "" + errorCode + ", " + errorCodeExtended, null);
 }
 public JxfsException(int errorCode, String description)
 {
 this(errorCode, 0, description, null);
 }
 public JxfsException(int errorCode, int errorCodeExtended,
 String description)
 {
 this(errorCode, errorCodeExtended, description, null);
 }
 public JxfsException(int errorCode, String description,
 Exception origException)
 {
 this(errorCode, 0, description, origException);
 }
 /* main constructor with all parameters */
 public JxfsException(int errorCode, int errorCodeExtended,
 String description, Exception origException)
 {
 super(description);
 this.errorCode = errorCode;
 this.errorCodeExtended = errorCodeExtended;
 this.origException = origException;
 }
 public int getErrorCode()

Page 45
CWA 13937-1:2000

 {
 return errorCode;
 }
 public int getErrorCodeExtended()
 {
 return errorCodeExtended;
 }
 public Exception getOrigException()
 {
 return origException;
 }
 protected int errorCode;
 protected int errorCodeExtended;
 private Exception origException;
}

4.2 Events

4.2.1 Event classes

All possible events are categorized and belong to one of the event classes outlined below.
The common base class for any J/XFS event is the JxfsEvent.

JxfsEvent
This event class contains the generic variables for all the events. It extends
java.util.EventObject. It is not used on its own but serves as a base class for the other
J/XFS event types.
In the following table all relevant methods are outlined
Method Return Meaning
getWhen() Date Contains the timestamp when the event was

created.
setSource(Object
source)

void Sets the source of this event. This is filled
with the Device Service object (as the events
are generated here), but is replaced by the
Device Control object before it is passed to
the application. Method

getSource() IJxfsBaseService
or
IJxfsBaseControl

Returns the source of the event. (Inherited
from the EventObject class).

The real working events are the following:

Page 46
CWA 13937-1:2000
IntermediateEvent

An IntermediateEvent is sent if intermediate results of an operation have to be sent to the
application. This can either be to inform the application of some conditions specific to the
operation (e.g. if a cash dispense command has to be delayed for a couple of minutes) or to
deliver intermediate data (e.g. the keystrokes pressed by the user).

It is sent only to the Device Control which started the operation.

Method Returns Meaning
IntermediateEvent (Object
source, int operationID, int
identificationID, int reason)

- Constructor for this Event. the ‘data’
variable is set to null.

IntermediateEvent (Object
source, int operationID, int
identificationID, int reason,
Serializable object)

- Constructor for this Event with
complete parameters

getOperationID() int The id number for the operation type.
One of the constant definitions
showing which type of operation the
event is related to.

getIdentificationID() int The id which was given by the
operation method to the application, -1
if not used.

getReason() int Specifies what the reason for this event
was (e.g.
JXFS_I_CDR_DISPENSE_DELAYE
D).

getData() Serializable Contains the optionally added data for
the application or null.
If it is not a Java base data type then
the object stored here should be a
subclass of JxfsType.

Interface class:IntermediateListener
Listener method: intermediateOccurred(IntermediateEvent e)

OperationCompleteEvent
An OperationCompleteEvent is always sent when a previously started operation
terminates. It is sent only to the Device Control which started the operation.
It can either just inform if a successful completion of an output command (e.g. „printed“),
returns the data of a requested input operation or gives information if the operation failed,
perhaps returning a partial dataset.
The operationID and identificationID identify the exact operation; the result code contains
the result of the operation, the optional data object can deliver additional data.
If the operation requested is a data input operation, then THIS EVENT MAY BE
SUBCLASSED and this subclass will be delivered INSTEAD of an operation complete
event. To easily identify these events they all start with the letters „OC“ followed by the 3
digit device type identifier to mark them as subclasses of the OperationCompleteEvent and
give a clear indication as for which device type this event is valid. See also the chapter on
naming conventions later in this document and the sample in the above object diagram
(OCPTRReadDataEvent).
Why do we do that?
For several input operations the data returned can be quite complex, and instead of hiding
the data in the generic variable „object“ it is easier for the application to directly query the
data from the event. Since the application must register separate listener methods with the
Device Control to receive these events, the application code to handle these events will
thus be more straightforward and less error prone.
An example would be the OCPtrReadDataEvent of the Printer classes. They deliver a
complex array of read fieldnames and their values. To receive it the application must do a
addOCPtrReadDataListener(myHandle).

Page 47
CWA 13937-1:2000

The exact parameters of the event are defined in the Device Control definition of every
device type.

Method Returns Meaning
OperationCompleteEvent
(Object source,
int operationID,
int identificationID,
int result)

- Constructor for this Event. Variables
data and extendedResult left empty.

OperationCompleteEvent
(Object source,
int operationID,
int identificationID,
int result,
int extendedResult)

- Constructor for this Event. Only data is
not given here.

OperationCompleteEvent
(Object source,
int operationID,
int identificationID,
int result,
Serializable data)

- Constructor for this Event. Without the
extendedResult.

OperationCompleteEvent
(Object source,
int operationID,
int identificationID,
int result,
int extendedResult,
Serializable data)

- Constructor for this Event. Fills all
parameters.

getOperationID() int The operationID which states what kind
of operation is complete.

getIdentificationID() int The id which was given by the operation
method to the application, -1 if not used.

getResult() int Specifies the operation result. It is
JXFS_RC_SUCCESSFUL if everything
was fine.

getExtendedResult() int An additional int specifying a result.
This is a device specific value! Its usage
by the application must only occur if the
correct device type is determined. Also,
by using it application will now be
device dependent. Returns –1 if not used.

getData() Serializable Contains optionally added data for the
application.
If it is not a Java base data type then the
object stored here should be a subclass of
JxfsType.

Interface class: OperationCompleteListener
Listener method: operationCompleteOccurred(OperationCompleteEvent e)

StatusEvent
A StatusEvent is sent if the status of the device has changed. The reason for this may either
be a change due to an operation (such as „paper low“) , or it may occur due to user
interaction (such as „device made offline“).
This type of event is sent to ALL the connected Device Controls.

Method Returns Meaning
StatusEvent (Object source,
int status)

- Constructor for this Event.

Page 48
CWA 13937-1:2000

StatusEvent (Object source,
int status,
JxfsType details)

- Constructor for this Event – complete
parameters

getStatus() int The status the affected device has changed
to. See the list below for details on when
these events are sent. Each specific Device
type also adds some more status codes.

getDetails() JxfsType
or one of
its
subclasses

Indicates the detailed status conditions of
the device.
This is filled if the given status does not
give the exact and complete status change
information.
An example here would be (for the printer)
that a status of JXFS_S_PTR_TONER
would be sent indicating something with
the toner changed. The application could
then query this details object for the exact
condition (is it empty or low or ...).
If a generic status change is reported (see
section on JxfsStatus) then this field is
empty (==null).

Interface class: StatusListener
Listener method: statusOccurred(StatusUpdateEvent e)

All the connected Device Controls (and thus the application or applet) are informed of
certain changes of the device status. They receive a StatusEvent with the corresponding
status and with a null details object in the following cases:

status Meaning
JXFS_S_CLAIMED Sent if the device was claimed.
JXFS_S_RELEASED Sent if the device was just released by a Device

Control which had claimed the device.
JXFS_S_HARDWAREEROR Sent if a hardware error was detected by the Device

Service.
JXFS_S_USERACTIONERROR Sent if an error was detected which is resolvable by

user intervention.
If a more specific StatusEvent is generated regarding
the error (e.g. a TONER_OUT) then NO additional
event with this id is sent.

JXFS_S_WORKING Sent if an error has been fixed to indicate that the
device is working again.

JXFS_S_SHUTDOWN The device service has completed its shutdown and
is not usable any more.

JXFS_S_REMOTEFAILURE The communication between DS and DC is broken;
device is not accessible any more.

JXFS_S_POWERSAVEON Device is gone into power save mode.
JXFS_S_POWERSAVEOFF Device has returned from power save mode.

4.2.2 Registering for Events and Event Delivery

To make an application ready for receiving events of a specific type, it must implement the
corresponding listener interface by defining the included listener method.
All events have applicable event data attached to them and can be explicitly requested by
the application by using the addXXXListener Methods in the Device Control classes
(where XXX depicts the EventType). An application registering for 2 event types would
look like this (the try-catch expressions are not included):

public class Sample implements StatusListener,

Page 49
CWA 13937-1:2000

 OperationCompleteListener
{
 public Sample()
 {
 JxfsDeviceManager mgr=JxfsDeviceManager.getReference();
 JxfsMagStripe mag=mgr.getDevice(“myMagStripe”);
 mag.addOperationCompleteListener((OperationCompleteListener)this);
 mag.addStatusListener((StatusListener)this);
 ...
 }
 public void operationCompleteOccurred(OperationCompleteEvent e)
 {
 if(e.getResult()==JxfsConst.JXFS_RC_SUCCESSFUL)
 {
 ...
 }
 ...
 }
 public void statusOccurred(StatusEvent e)
 {
 ...
 }
} // Sample.java

The OperationCompleteEvent received in the above method will be the ‚receipt‘ of the
requested operation for the application. It is received only by this application.
In contrast to that, the StatusEvent will be sent to any application which has a valid Device
Control.
The events generated in the Device Service are delivered to the control in a different thread
context. The Device Control has to catch them and store them in a event queue; returning
quickly to the Device Service. In another thread (one per event type) it now starts to
deliver the events to the application. It uses only a single thread to do it. Thus flow control
is simplified for the application. For details see "Threads and flow control"on page 14.

The possible error codes reported by these events are
� One of the global codes defined in JxfsConst.java
� Special codes for specific devices (JxfsXYZConst.java). Each Device Control can

optionally have such an additional constants file.

Any exceptions from the Device Communication layer (i.e. RemoteException) are logged
and a new JxfsException with error code JXFS_E_REMOTE is generated.

The Device Service gets references to objects which implement the following
IJxfsEventNotification interface. In these objects the corresponding fireXXXEvent
methods are invoked to deliver the events.
In cases where the event could not be delivered a JxfsException is thrown.

///
//
// IJxfsEventNotification
//
// Interface defining callback methods in the Device
// Control that are callable by a Device Service.
//
///
package events;

public interface IJxfsEventNotification
{
 public void fireIntermediateEvent(IntermediateEvent e)
 throws JxfsException;
 public void fireOperationCompleteEvent(OperationCompleteEvent e)
 throws JxfsException;
 public void fireStatusEvent(StatusEvent e)
 throws JxfsException;
}

Now, what about the different subtypes of the OperationCompleteEvent and the rules
governing their use?
They are all found in the events package, together with their listeners. All sub-events have
their own Listener method in the application. This means, that if the application registers to

Page 50
CWA 13937-1:2000

receive e.g. OCMSDTrackReadEvents it gets these events in the corresponding listener
method. The event is NOT sent to the OperationComplete listener method, because all
events are only sent once to each application.
The OC events are generated in the Device Service, which uses the
fireOperationCompleteEvent() method to deliver it to the Device Control. As explained
earlier in detail in Threads and flow control on page 14, the Device Control has two queues
where it stores events for delivery to the application. One is used for StatusEvents, the
other for OperationComplete (or its subclasses) and Intermediate events.
The separate thread in the Device Control which has the duty to deliver all the OC events
to the registered listeners of this control now takes the topmost event from the queue and
must analyze its class. If it is one of the subclasses of the OperationCompleteEvent then
the corresponding listener method is invoked, if it is an original OperationCompleteEvent
it is sent to the OperationCompleteOccurred() method of the application.

Page 51
CWA 13937-1:2000

5 Support Classes
The following section discusses the number of additional classes provided to generally
support the defined infrastructure of J/XFS. These are both internal classes not visible to
the application or applet as well as support classes which are used to present data to the
application.

5.1 JxfsServer and JxfsConfiguration
The Device Manager must access a central data storage to be able to retrieve the
configuration information for the local machine (JxfsConfiguration). This information is
later used to initialize service objects for the locally attached devices. Additionally, it and
the Device Services find any information they need in that repository, e.g. the default
devices for each J/XFS client, their workstation name and port number.
The Device Manager uses this information to start up the remote access infrastructure so
that the devices can be accessed by other J/XFS clients.
After successful initialization it must register these devices with a dynamic centralized
cache (JxfsServer) so that other J/XFS clients know of the availability of its devices.
The DeviceManager is the only one to access these repositories directly; the services and
controls do it via the DeviceInformation objects which are discussed in the next chapter.
The following graphic illustrates a sample interface to these repositories.

As this is a DM internal interface which is neither used by the application nor the controls
and services it is not within the scope of this standard to define the exact interface; this is
rather hidden in each specific DM implementation.
The important point is that two different kinds of server tasks are needed by the J/XFS
infrastructure; one for the static configuration and one for dynamic availability
information.
The question, how the information is loaded into the repository and how it can be changed
there is not generically solvable and thus not explained here. The forum is aware of the fact
that initializing, loading and administering the repository is a key feature of any program
implementing J/XFS.

Page 52
CWA 13937-1:2000
5.2 JxfsDeviceInformation

The basic configuration data describing the device is stored in the JxfsDeviceInformation
object or in its subclasses JxfsLocalDeviceInformation and JxfsRemoteDeviceInformation.
The objects of this classes are a kind of information container hiding configuration
structure from the Controls and Services layer; the means how this information is stored /
gathered can be changed by different implementations without affecting Device Service
and Device Controls.
They can query these objects for generic information about the control like it’s name, a
description of the device etc.

During DM initialization all information about locally attached devices is gathered by
requesting the JxfsLocalDeviceInformation objects from the repository. Their device
information objects are then given by the DM to the DeviceServices and DeviceControls at
initialization time.
If there are devices which should be remotely accessible the DM generates the
corresponding JxfsRemoteDeviceInformation and announces this at the J/XFS Server.
The JxfsRemoteDeviceInformation also includes the connection information where the
device can be found and the names of the remote objects, but this is implementation
specific.

Currently the following standard properties (all read-only) are defined in the
JxfsDeviceInformation:
localDeviceName
The unique device name for this device in this J/XFS client. It is freely assignable during
the installation.
Note that this is a LOGICAL device name. Every device on a workstation must have a
unique name, even it is of the same type as another device!
deviceName

Page 53
CWA 13937-1:2000

This property only exists by its getDeviceName() method. It returns the localDeviceName,
but in the case of a remote device this name is augmented by the workstation name the
device is connected to. Although an implementation of J/XFS may want to use its own
format for the unique identification of a device we strongly suggest to use the format
“<devicename>@<hostname>”, i.e. printer2@workstation1.sample.domain.com to specify
this. Please also see chapter ‘Remote device access’ on Page 39 on this subject.
description
A String with the clear text description what this device is and where it can be found. May
be used to present in a list to the user. Sample: “Passbookprinter 2nd floor (Mr. Millers
office)”.
deviceKey
Unique identifier for the device in the repository, e.g. the deviceName without blanks. This
is used to have a separation between the free-format device name and an identifier for the
repository which possibly poses certain restrictions to the allowed characters for keys. As
the localDeviceName this must be unique for all devices connected to a workstation.

The JxfsLocalDeviceInformation also contains
textResource
An URL (uniform resource locator, the Internet – way of specifying resource, e.g.
“http://www.acme.com/support/printers”) which identifies a location where the DS can
find a file. This allows the Device Service to gain access to a file in a device specific
format which can contains any language dependant strings the DS wants to use as
parameters, e.g. in error messages.

The JxfsRemoteDeviceInformation also contains:
workstationName
The (unique) name of the workstation the device is connected to, usually the TCP/IP
hostname.

The three DeviceInformation classes must implement Serializable as they are retrieved
from the repository and thus must be streamable over the network.
Almost every Device Service has a need to store some additional device specific
configuration data. This must also be put into the repository. As each Device Service has a
reference to its local configuration data this object also supports reading / writing of
arbitrary data.
The following methods are used for this:
Serializable getValueForKey(String key) throws JxfsException
This method allows an arbitrary persistent object to be retrieved under the given key into
the repository.
If the key is not found in the repository an exception with JXFS_E_NOEXIST is thrown.
void setValueForKey(String key, Serializable value) throws JxfsException
Saves the persistent object under the given name. If the key does not exist, it is created, if
it exists, the value is replaced. The object must be a subclass of Serializable.
To remove a key from the repository, use this method and specify null as the value
parameter.
An exception JXFS_E_ILLEGAL is thrown if the key specified is not allowed. This can
e.g. happen if the key contains invalid characters or if a read-only key with the same name
exists which cannot be overwritten

Also, there is a provision so that the Device Service can register itself here to be informed
if one of its key entries is changed on the server. It needs to implement the
IJxfsKeyValueChangeListener interface as described in the chapter on the
JxfsDeviceManager and use the following method of a LocalDeviceInformation object to
register:
void addKeyValueChangeListener(IJxfsKeyValueChangeListener listener, String
key) throws JxfsException
This method registers the listener to be informed when the value for the key "key" in the
repository changes. Throws an JXFS_E_PARAMETER_INVALID exception if one of the
parameters is null.
void removeKeyValueChangeListener(IJxfsKeyValueChangeListener listener)
throws JxfsException

Page 54
CWA 13937-1:2000

Removes the given listener. Throws an JXFS_E_PARAMETER_INVALID exception if
one of the parameters is null. If the listener is not known, an JXFS_E_FAILURE is thrown.

For the special case of querying the firmware level of the device, each DeviceInformation
object also provides the following methods:
� JxfsVersion getFirmwareVersion();

This method can be used to gather the version information of a new firmware present
in the repository for this device. It is null if no new firmware is present.

� byte[] getFirmware() throws JxfsException;
This call returns the actual byte codes of the firmware from the repository. It can be
used by the Device Service to update the device if requested..

The advantage of providing these special methods versus a generic getValueForKey()
access is that the same keys are used by all vendors to access the firmware.

5.3 Tracing and error logging
Within the J/XFS architecture all components have the possibility to write traces and to do
error logging via a standard interface.
The interface may also be used by the application and is provided by a JxfsLogger object.

5.3.1 Overview

Tracing

Tracing is used to track the running of the various components: To do this, trace points are
implemented in the programs. When they are activated they provide the logger object with
information about internal states and events.
The trace points can be defined in different levels (trace point for function entry and
function exit, trace point for tracing configuration entries, trace point for tracing debugging
information, etc.). The activation of the different trace points can be component specific
during runtime, e.g. if a developer is interested in the function entry and function exit
points only, he has to activate the appropriate trace point for this specific component. This
mechanism to activate different trace points during runtime is defined by the logger object.
The trace is therefore primarily a mechanism to analyze the behavior of the application or
software modules and is mainly used by developers or field engineers.
A sufficient number of trace points can be set for every component; each of these points
being unique in the system. Every trace point can be activated externally and without the
relevant module being involved.

Error logging

In contrast to traces, error logging is used for the continuous logging of error or warning
events from the components. Error logging is always active. Whenever a component calls
the logger object's method to do error logging, an error log entry is produced by the logger
object.
When collecting and recording trace and error data the standard logger object separates the
two types of data from one another so that subsequent components which are, for example,
only interested in error data, do not have to filter a mass of trace entries to isolate this error
data. Via additional software modules these collected errors may be transferred to a central
system (i.e. SNMP Event Reporting, see below).

This error logging facility serves as the central point where error information from the
devices is gathered. It is therefore important that all devices make extensive use of this
facility.
In the graphic below we have a small scenario of which messages and events would be
triggered by a hardware error. It also shows how a service application might register for the
Device and query its status after an error has occurred. Please note that the textual strings
are in a language-specific format. Every DS has the duty to create this form of the
information. In order to allow for a multi-language installation the DS can use the

Page 55
CWA 13937-1:2000

getTextResource() utility function from the JxfsLocalDeviceInformation object to receive
the textual representation of an error. See “JxfsDeviceInformation” on page 52 for further
details.

DeviceService

HW

Customer
Application

DeviceControl

(1) myDevice.operation()

(5a) OperationCompleteEvent
 JXFS_E_HARDWAREERROR

Monitoring
Application

JxfsLogger

writeErrorLog (JXFS_E_PTR_PAPER_JAM,
 f823,
 “V.24 Timeout”,
 “Check Connection”)

errorLogOccurred(
 JXFS_E_HARDWAREERROR,1234,
 “V.24 Timeout”, “Check connection”

Hardwareproblem occurred (V.24 Timeout),
Vendor specific ErrorCode 1234

Resource
File

(3) URL getTextResource()

DeviceControl

myDevice.getStatus()

Service
Application

 StatusEvent
 JXFS_S_HARDWAREERROR

(2)

(1a)

(3a)

(3b)

(4)

(4a)

(5)

(6)

(6a) (7)

(7a)

Explanation of the flow chart:
 (1) - (1a) An operation is sent to the Device Service
(2) During performing the operation a hardware error occurs.
(3) - (3b) The Device Service reads it resources and finds the corresponding

error text and hint.
The Device Service writes an error log to the JxfsLogger, the JxfsLogger
sends an event to the registered listener with the errorCode, the
extendedErrorCode, the error message, an error hint and a string containing
an URL (uniform resource locator) where more information can be found.

(4) - (4a) The Device Service sends a StatusEvent to the registered listener
(5) - (5a) The Device Service sends the OperationCompleteEvent with the result

JXFS_E_HARDWAREERROR to the application that wanted to perform
the operation.

(6) - (6a) The Service application tries to get some more detailed status information
and performs a status query.

(7) - (7a) The StatusEvent is sent to a Service application.

5.3.2 JxfsLogger
The JxfsLogger is a single separate object which exists in every Java VM. Every object of
course has access to its local JxfsLogger only. It can report errors and write informational
and trace messages to the log.
The final logging of all messages is not done by the JxfsLogger itself. Rather a listener
interface exists which can be implemented by other objects (under application control).
The JxfsLogger sends out the messages to any object which has registered to be a listener.
This is a very flexible mechanism using the Java event notification scheme, which makes it
easy to distribute the available information.
There is also no restriction on who is using the JxfsLogger. It is especially not restricted to
transfer only J/XFS related messages. Basically, even the application might use the
JxfsLogger to report what’s going on to an independent instance.

If no listener is registered, JxfsLogger displays error messages on the console in order to
give an operator/administrator a chance to get aware that there may be a problem. It is
relatively easy to write a listener which simply writes every line to a file. This would of

Page 56
CWA 13937-1:2000

course only be available for an application or a signed applet on a system with a harddisk.
An even more elaborate listener class could open a network connection to a supervising
workstation, register e.g. with a SNMP instance and deliver its contents there.
In the listener it can also be decided what to do with the delivered messages and filter
them.
Basically, any number of objects can report to the JxfsLogger, which in turn informs one
or more ErrorLogListener and LogListeners. The architecture looks like this:

The objects (or module groups of objects) which want to send messages to the JxfsLogger
must first initialize the JxfsLogger for their use. They have to send it a short textual
identifier and a longer description suitable for display. The short identifier must be used for
all subsequent write calls. This is used by the JxfsLogger and its listeners to identify which
class or module has generated the message and also enables them to use filters on a module
bases.
Then they can use the 2 different writing methods, one for reporting error conditions and
the other one to write trace log entries. The log entries are delivered with a level indicator
which can be analyzed by a LogListener.

Every message given to the JxfsLogger is automatically augmented with a timestamp (a
Date object) and a description of the issuing thread where the line was generated, so it is
not needed to include such information by the issuing object.

The ErrorLogListener interface servers for instances which are only interested in the error
messages which are reported. It is defined like this:

/**
 * IJxfsErrorLogListener.java
*/
public interface IJxfsErrorLogListener
{
 public boolean initialize(String parameters);
 public void errorLogOccurred(String source_identification,
 String origin,
 long errorCode,
 long extendedErrorCode,

 String message,
 String hintText,
 String help_url,

 String curr_thread,
 Date timestamp);
 public void shutdown();
 public String getDescription();
}

The first method is used to initialize the object. This is needed to have an initialization
mechanism independent of the specific implementation.
The errorLogOccurred method is called by the JxfsLogger for every error message which
is reported. The parameters in the errorLogOccurred method are explained below in the
writeErrorLog method of the Logger, with the only difference, that the first parameter here
is a stringized representation of the originating object.
The shutdown method is called by the JxfsLogger to inform the registered logger that after
this method the system will shut down. This call must always return and allows the logger
to do some cleanup work.
And finally, the getDescription() method should return a short (max. 80 chararcters)
human-readable description of this LogListener, e.g. "FileLogger logging to c:\logfile". In
multi-language environments this String should be internationalized.

A DC

A DS

JxfsLogger

 ErrorMsgs
 LogMsgs

An ErrorLogListener

A LogListener

An ErrorLogListener

Object x

Page 57
CWA 13937-1:2000

A LogListener interface is also provided which also contains the error interface but
augments it by supplying the log messages, too.

/**
 * IJxfsLogListener.java
 */
public interface IJxfsLogListener extends IJxfsErrorLogListener
{
 public void logOccurred(String source_identification,

 String origin,
 int level,
 String log_message,
 String curr_thread,
 Date timestamp);
} // LogListener

As can be seen in above interface description, the idea is that LogListener inherit from the
ErrorLogListener, i.e. they are receiving both error and normal logging messages. The
ErrorLogListener only receive the error messages.

JxfsId
In order to provide information about a registered Logger, a helper class JxfsId is defined,
which only contains information about a LogListener. It contains a description (as returned
by the corresponding LogListener) as well as an integer id which is set to a unique value
from the JxfsLogger in order to clearly identify this LogListener.
Remark: This class may also be used to identify objects in other occasions, as its definition
is quite generically applicable. The only prerequisite is that an integer is sufficient to
uniquely identify the instance and a string-based description is available.
JxfsId has the following methods:

JxfsId(); // the constructor
JxfsId(int id, String description); // second constructor
void setId(int id); // Setter for id
int getId(); // Getter for id
void setDescription(String description); // Setter for description
String getDescription(); // Getter for description
String toString(); // returns the id + the description in one String
Object clone(); // returns a clone of this object

Now, the main class JxfsLogger has the following public methods:
� static JxfsLogger getReference()

Returns the reference to the JxfsLogger-Object. Must be used to access this singleton.
� boolean registerModule(String origin, String description)

Must be used by each object before the first line is reported to identify itself in both a
short and a long form. The short form should uniquely identify this object (i.e.
“DevMgr”), and the description should be suitable for display in a supervisor
application, e.g. “Acme Passbook printer Device Service, Version 1.2”)
This method returns false if the given origin already exists as registered.

� boolean deregisterModule(String origin)
If the object doesn’t use the Logger any more it should deregister using this call. If
should only do this if it has successfully registered before.
This method returns false if the origin wasn’t found in the registered list.

� boolean writeErrorLog(Object issuer,
 String origin,
 long errorCode,
 long extendedErrorCode,
 String message,
 String hintText,
 String help_url)
Use this method to issue an error message. The issuer is the sending object itself. The
origin is a short string with the module identification, it should have been announced
to the logger by a previous registerModule() call.
The errorCode is the generic errorCode for this error, extendedErrorCode is a device
specific, more detailed, code. The message is the error message itself in a language-
specific form, the hintText gives some hints regarding a way to solve the error. Both
message and hintText should not be long explanations but rather short strings (1-3
lines), and the help_url gives the originator of the message a way to announce where
more detailed information regarding this error can be found.

Page 58
CWA 13937-1:2000

extendedErrorCode may be specified as 0, hintText and help_url may be left blank
(“”) if they are not applicable. The other parameters are mandatory.
False is returned if some internal error occurred.
To use an unregistered origin here is not recommended, but the message is logged
anyway.

� boolean writeLog(Object issuer, String origin, int level, String message)
Use this method to issue a log message. The issuer is the sending object itself. The
origin is a short string with the module identification, it should have been announced
to the logger by a previous registerModule() call.
The level identifier is an integer. It is left to the programmer to define the exact
semantics of this integer.
The message itself should be clearly readable, and may also be language specific using
the mechanism as outlined in the writeErrorLog method description.
To use an unregistered origin here is not recommended, but the message is logged
anyway.

� boolean isLogActive(String origin, int level)
If logging is used there are potentially very many log entries. It is advisable to prevent
generation of many log messages which are only thrown away afterwards. Also,
creating the message to be logged may be time-consuming. For maximum system
performance, before issuing a writeLog() call the issuer can check if that message
should be logged at all. It does so by calling this method. If True is returned, the
logging is desired. So, a typical usage is
 if (JxfsLogger.getReference().isLogActive(“DM”,5)
 {
 JxfsLogger.getReference().writeLog(“DM”,5,0,
 ”Cannot load class”+classToInstantiate,””,””);
 }

The logActive state may dynamically change during runtime. A user of the logger
should not issue this only once during startup but before every call.
How is this logging activated and deactivated? This is considered to be a detail of a
J/XFS implementation and is thus not described here.

� JxfsId addErrorLogListener(IJxfsErrorLogListener listener) ,
JxfsId addLogListener(IJxfsLogListener listener)
Any object implementing the required interfaces can register with these methods to
receive either only the error messages or both error and log messages. Any registered
LogListener will also receive all error messages.
A registration of the same object to both methods returns an error.
If the listener could not be added, a null value is returned.

� boolean removeErrorLogListener(int listenerId) ,
boolean removeLogListener(int listenerId)
Use this method to deregister interest in the messages. The parameter can be queried
from the JxfsId object corresponding to this Listener (returned from the following
method)

� Vector getErrorLogListeners()
Return a Vector containing objects of type JxfsId for all registered ErrorLogListeners.

� Vector getLogListeners()
Return a Vector containing objects of type JxfsId for all registered LogListeners.

� IJxfsErrorLogListener getErrorLogListener(int listenerId)
Return the reference to the ErrorLogListener identified by the listenerId.

� IJxfsLogListener getLogListener(int listenerId)
Return the reference to the LogListener identified by the listenerId.

Additionally, there are some available methods only to be used internally.
� shutdown()

This method should only be used by the DeviceManager. It prepares for system
shutdown: The JxfsLogger now tells all connected listeners to shutdown. After this
call has completed the JxfsLogger is in its original startup state again.

As stated above, the ‘level’ integer specified in the trace log messages is not predefined.
This standard, however, proposes to adhere to the following rules:
� Ids from 1 to 9 should be used to describe the workflow as outlined below;

Page 59
CWA 13937-1:2000

� Ids 10 to 99 are for generic trace points
� Ids starting with 100 are for additional custom trace points.

Value Meaning
1 Report with this id that an operation request was made and interesting

parameters to it.
2 Report with this id if an operation was completed, i.e. an OC Event is sent and

its values.
3 A device property has changed.
4 The device status has changed (includes device ready, device closed and

shutdown).

10 Method entry
11 Method exit

80-99 reserved for J/XFS internal use
100 JXFS_LOG_USEROFFSET, start of first custom trace point.

Systems Management and Monitoring (e.g. SNMP)

In order to centrally manage hard- and software installations in a banking environment it is
desirable to be able to centrally supervise the workstation and connected hardware, as well
as to have a means that the complex peripheral devices can use to post a message to a
central administrative supervisor workstation.

J/XFS contains a generic logger to which arbitrary listening objects can register. This can
be any specific logger objects (e.g. a Tivoli SNMP client object) or even the application
itself. It can be expected that when the J/XFS device framework spreads, the systems
management vendors will implement respective loggers for their infrastructure. Any
program implementing the J/XFS infrastructure should usually also provide for a set of
simple LogListeners.

5.4 J/XFS constant codes
The currently available constant definitions can be seen in the following code snippets.
Each device type can have its own additional constants file, and the codes used in it should
be in the range from 1000 to 30000 in order to avoid overlap of the standardized codes.
The return codes defined in the directIO statement should start from 30000 as outlined
below.
///
//
// JxfsConst
//
// General constants for J/XFS Applications.
//
///
package control;

/** Constant definitions concerning all devices. */
public interface JxfsConst
{
 //###
 //#### General Constants
 //###

 /**Any error start at number...*/
 public static final int JXFSERR = 1000;
 /**Any extended Error starts at number ...*/
 public static final int JXFSERREXT = 2000;

 /** Some basic operation id codes */
 public static final int JXFS_O_OPEN = 900;
 public static final int JXFS_O_CLOSE = 901;
 public static final int JXFS_O_UPDATEFIRMWARE = 902;

Page 60
CWA 13937-1:2000

 /** The following codes are returned by method
JxfsBaseControl.getFirmwareStatus(). */
/** Firmware in repository is newer than current firmware. */
 public static final int OK_NEWER = 903;

 /** Current firmware is newer but update possible. */
 public static final int OK_OLDER = 904;

 /** Different firmware functionality but update possible. */
 public static final int OK_OTHER = 905;

 /** No firmware found in the repository. */
 public static final int NO_SOURCE = 906;

 /** Firmware in the repository is not correct for this device. */
 public static final int NO_MATCH = 907;

 /** Firmware update is not possible with this device. */
 public static final int NO_SUPPORT = 908;

 /**Any code defined by a specific device
 operation should start from this offset in order not to mix up
 with J/XFS definitions. */
 public static final int JXFSDEVICE_OFFSET = 1000;
 /** Offsets of the known device types */
 public static final int JXFS_PTR_OFFSET = JXFSDEVICE_OFFSET + 0000;
 public static final int JXFS_MSD_OFFSET = JXFSDEVICE_OFFSET + 1000;
 public static final int JXFS_PIN_OFFSET = JXFSDEVICE_OFFSET + 2000;
 public static final int JXFS_CDR_OFFSET = JXFSDEVICE_OFFSET + 3000;
 public static final int JXFS_ALM_OFFSET = JXFSDEVICE_OFFSET + 4000;
 public static final int JXFS_TIO_OFFSET = JXFSDEVICE_OFFSET + 5000;

 /**Any rc or code defined by a specific device for a direct-IO
 operation should start from this offset in order not to mix up
 with J/XFS definitions. */
 public static final int JXFSDIRECTIO_OFFSET = 30000;

 ///
 // Return Codes from calls which deliver an immediate result
 ///
 /**Standard return for successful calls*/
 public static final int JXFS_RC_SUCCESSFUL = 0;
 /**Unspecified unsuccessful return */
 public static final int JXFS_RC_UNSUCCESSFUL = 1;

 ///
 // Exception codes
 ///

 /**Device Control unusable because no service connected */
 public static final int JXFS_E_UNREGISTERED = 1 + JXFSERR;
 /**Device still closed, function not yet available*/
 public static final int JXFS_E_CLOSED = 2 + JXFSERR;
 /**Device still already or still opened */
 public static final int JXFS_E_OPEN = 3 + JXFSERR;
 /**Device is already or still claimed by this Device Control */
 public static final int JXFS_E_CLAIMED = 4 + JXFSERR;
 /**Device is not claimed*/
 public static final int JXFS_E_NOTCLAIMED = 5 + JXFSERR;
 /**Requested Service not available*/
 public static final int JXFS_E_NOSERVICE = 6 + JXFSERR;
 /**Requested communication object not available, i.e
 the device is not remotely accessible */
 public static final int JXFS_E_NOTREMOTE = 7 + JXFSERR;
 /**Requested Control not available*/
 public static final int JXFS_E_NOCONTROL = 8 + JXFSERR;
 /**Device is disabled */
 public static final int JXFS_E_DISABLED = 9 + JXFSERR;
 /**Illegal request. Not allowed at this time or never allowed */
 public static final int JXFS_E_ILLEGAL = 10 + JXFSERR;
 /** The device hardware could not be found or is not connected */
 public static final int JXFS_E_NOHARDWARE = 11 + JXFSERR;
 /** The device is switched offline */
 public static final int JXFS_E_OFFLINE = 12 + JXFSERR;
 /** The requested item (device or key) does not exit */
 public static final int JXFS_E_NOEXIST = 13 + JXFSERR;
 /** Object already exists */
 public static final int JXFS_E_EXISTS = 14 + JXFSERR;
 /** The operation failed */

Page 61
CWA 13937-1:2000

 public static final int JXFS_E_FAILURE = 15 + JXFSERR;
 /** A timeout occurred before completion */
 public static final int JXFS_E_TIMEOUT = 16 + JXFSERR;
 /** Operation not possible, device is already busy */
 public static final int JXFS_E_BUSY = 17 + JXFSERR;
 /** One of the parameters given was invalid. Further information
 may be found in extendedErrorCode */
 public static final int JXFS_E_PARAMETER_INVALID = 18 + JXFSERR;
 /** Errors during a remote operation */
 public static final int JXFS_E_REMOTE = 19 + JXFSERR;
 /** Errors during an input or output operation */
 public static final int JXFS_E_IO = 20 + JXFSERR;
 /** The operation was cancelled by the application via cancel()*/
 public static final int JXFS_E_CANCELLED = 21 + JXFSERR;
 /** The operation is not supported by this object */
 public static final int JXFS_E_NOT_SUPPORTED = 22 + JXFSERR;
 /** Error during firmware update or no runnable firmware in device */
 public static final int JXFS_E_FIRMWARE = 23 + JXFSERR;
 /** Internal system error occurred. */
 public static final int JXFS_E_SYSTEM = 24 + JXFSERR;

 ///
 // Status Constants
 ///
 public static final int JXFS_S_RELEASED = 1;
 public static final int JXFS_S_CLAIMED = 2;
 public static final int JXFS_S_HARDWAREERROR = 3;
 public static final int JXFS_S_USERACTIONERROR = 4;
 public static final int JXFS_S_WORKING = 5;
 /* Inform or a shutdown */
 public static final int JXFS_S_SHUTDOWN = 6;
 public static final int JXFS_S_POWERSAVEON = 7;
 public static final int JXFS_S_POWERSAVEOFF = 8;
 /* Additional DeviceManager stati */
 public static final int JXFS_S_SERVICE_STOPPED = 9;
 public static final int JXFS_S_SERVICE_STARTED = 10;
 public static final int JXFS_S_REMOTEFAILURE = 11;
 /* Status changes */
 public static final int JXFS_S_BIN_STATUS = 12;
 public static final int JXFS_S_MEDIA_STATUS = 13;

 ///
 // General Constants
 ///
 public static final int JXFS_FOREVER = -1;
 public static final int JXFS_ALL = -1;

}

5.5 Temporary data and generic classes

5.5.1 JxfsType
extends Object implements Serializable
This is a class any J/XFS class which contains data should inherit from. This can be the
data objects delivered within some events or any other complex object which serves as an
input or output parameter for Device Control methods.
This is needed to ensure the streamability of any data class used in J/XFS because any data
object might be streamed over a network connection and must be stored in the repository in
its binary format.
Java base data types like String, int, etc. are streamable anyway and thus may be used as
parameters without putting them into special wrapper classes.

A common question arising here is: Why does JxfsType not implement Cloneable (and
overriding method clone()) to ensure that any data class can be cloned, and why does it not
specify toString(), hashCode() and equals() as abstract methods? This would force any data
class to implement these methods.
This is intentionally not specified here because all these features are not generally required,
and it is left to the specific subclass to override these methods or not.

In the following chapters a number of generic data classes are defined. They can be used as
base classes for device specific extensions or right away as return values for device
specific things.

Page 62
CWA 13937-1:2000
5.5.2 JxfsStatus

The JxfsStatus object delivers status information for J/XFS.
Each Device Service has such an object. A copy of this is returned from the getStatus()
method.
The contents of this object reflects the DeviceService status at the time when the object
was returned.
The object returned is at least of type JxfsStatus, and may be a subclass of it. Each device
type which has additional status makes a subclass of it and adds the corresponding set and
query methods to this object. A sample could be e.g. JxfsPrinterStatus. It is always only
filled by the Device Service.

Implements : Cloneable Extends : JxfsType

Property Type Access Initialized by
open boolean RW Device Service
claimPending boolean RW Device Service
claimed boolean RW Device Service
busy boolean RW Device Service
hardwareError boolean RW Device Service
userActionError boolean RW Device Service
powerSave boolean RW Device Service

Method Returns Meaning
JxfsStatus() - Constructs a new status. Any

property is false.
setProperty void Set the corresponding property,

i.e. void setBusy(boolean setTo).
isOpen boolean Returns true if the device is

opened, false if not.
isClaimPending boolean The device has received a claim

request which is not yet granted.
isClaimed boolean Returns true if the device is

claimed, false if not.
isBusy boolean Is set if an operation is running.
isHardwareError boolean A hardware error is a device error

which can only be fixed by
service personnel.

isUserActionError boolean If an error condition can be fixed
by user action (e.g. supplying
more paper) this is true. Even if
this is false an error may be
present, namely the above
hardware error.

isWorking boolean If neither a hardware nor user
action error is present and the
device is opened it is assumed to
be working, i.e. this method
returns true.

isPowerSave boolean If the device is in power save
mode this returns true.

The device type specific subclasses extend this base object by adding properties and the
corresponding is... and set... methods.

These status objects report the complete status of a device. Some device types possibly
have other objects to report special subtypes of status (two standard ones mentioned below
are JxfsMediaStatus and JxfsBinStatus for the number of bins present in a device). They
are usually contained within the general Status object and queried via special methods.

Page 63
CWA 13937-1:2000

To get information about the fill level of the retain bin in a motorized MSD the application
has to issue the following calls:

JxfsBinStatus retain=myMSD.getStatus().getRetainBinStatus();
if (retain.isFull())

This relationship of JxfsStatus, its subclasses and their aggregates is outlined in the
following graphic:

5.5.3 JxfsMediaStatus
This class defines a generic API to query the status of a media in a device. It is e.g. used by
the printer to represent its paper position or by the motorized MagStripe device class to
represent the card location.

This object is received by the application either by calling getStatus() and querying the
device specific status object9 or by analyzing the details object in the StatusEvent.
The state given by the JxfsMediaStatus object reflects the state of the device at the time of
its sending, i.e. the device state may already have changed again. It is always only filled by
the Device Service.

If the application wants to check if the mediaState checking is supported a method inside
the containing JxfsStatus or the device capabilities must be queried.

Summary
Implements : Cloneable Extends : JxfsType

Property Type Access Initialized by
mediaState int RW Device Service classes

Method Return Meaning
JxfsMediaStatus(int state) void Constructs a new object, media

state is set accordingly.
setMediaState(int state) void Set the mediaState property to the

given value. No sanity checking is
done.

getMediaState() int Return the mediaState property.

9 The method call would be similar to myPrinterDeviceControl.getStatus().getPaperPosition(). See section
JxfsStatus for explanation.

Page 64
CWA 13937-1:2000

isEjected boolean Media is in the entry/exit slot of
the device.

isJammed boolean Media is jammed in the device.
isPresent boolean Media is inserted in the device.
isUnknown boolean State of the media cannot be

determined with the device in its
current state.

toString String Returns a short textual
representation of the contents of
this object.

Properties

mediaState Property R

Type int
Initial Value JXFS_S_MEDIA_UNKNOWN
Description Specifies the current state of the media. Depending on device capability,

mediaState will be set to one of the following values:
Value Meaning
JXFS_S_MEDIA_EJECTED=1 Media is in the entry/exit slot of the

device.
JXFS_S_MEDIA_JAMMED=2 Media is jammed in the device.
JXFS_S_MEDIA_PRESENT=4 Media is inserted in the device.
JXFS_S_MEDIA_UNKNOWN=8 State of the media cannot be

determined with the device in its
current state.

Event If the value of this property changes, the Device Service will send all
registered StatusListeners a StatusEvent with the following value and the
corresponding mediaState object. This usually overrides the generation of a
generic UserActionError event.
Value Meaning
JXFS_S_MEDIA_STATUS mediaState changed.

The setting of the property should only be done by the respective device service (using the
setMediaState() method).

Methods
Rather than analysing the mediaState integer, the application should use the following
methods query the status. As the contents of the queried status object does not change after
it has been received they are always available and do always return the same value. They
also do not generate any events or take any parameters.

isEjected Method

Syntax boolean isEjected(void);
Description Returns TRUE if media is in the entry/exit slot of the device (the value

of the mediaState property is JXFS_S_MEDIA_EJECTED).

isJammed Method

Syntax boolean isJammed(void);
Description Returns TRUE if media is jammed in the device (the value of the

mediaState property is JXFS_S_MEDIA_JAMMED).

isPresent Method

Syntax boolean isPresent(void);

Page 65
CWA 13937-1:2000

Description Returns TRUE if media is inserted in the device (the value of the
mediaState property is JXFS_S_MEDIA_PRESENT).

isUnknown Method

Syntax boolean isUnknown(void);
Description Returns TRUE if the status of the media cannot be determined with the

device in its current state (the value of the mediaState property is
JXFS_S_MEDIA_UNKNOWN).

toString Method

Syntax String toString(void);
Description Returns a small textual representation of this object. This is an

identifier, the int and a short code of the stati (in capitals if true, in
small caps otherwise). Sample: “MediaStatus(6-eJPu)@4AC2F, with
the hex number being the hash code of the object.

5.5.4 JxfsThresholdStatus
This class defines a generic API to query and detect several threshold values. This can be
e.g. the paper supply present in a printer (to detect if it’s low or empty) or the retain bin of
a card reader (to detect if its full or almost full).
This object is received by the application either by calling getStatus() and querying the
device specific status object or via certain StatusEvents. The state given by an object of
this type reflects the state of the device at the time of its sending, i.e. the state may already
have changed again. It is always only filled by the Device Service.

If the application wants to check if the threshold checking is supported a method inside the
applicable JxfsStatus or the device capabilities must be queried.

Summary
Implements : Cloneable Extends : JxfsType

Property Type Access Initialized by
thresholdState int RW Device Service classes

Method Return Meaning
JxfsThresholdStatus(int
state)

void Constructs a new object, threshold
state is set accordingly.

setThresholdState(int state) void Set the property. No sanity
checking is done.

getThresholdState() int Return the property.
isFull boolean see property description.
isHigh boolean see property description.
isLow boolean see property description.
isEmpty boolean see property description.
isUnknown boolean see property description.
toString String Returns a short textual

representation of the contents of
this object.

Properties

thresholdState Property RW

Type int
Initial Value n/a
Description Specifies the status of the threshold. Depending on device capability,

thresholdState will be set to one of the following values:

Page 66
CWA 13937-1:2000

Value Meaning
JXFS_S_BIN_OK=0 Bin is O.K.
JXFS_S_BIN_FULL=1 Bin is full.
JXFS_S_BIN_HIGH=2 Bin is high.
JXFS_S_BIN_LOW=4 Bin is low.
JXFS_S_BIN_EMPTY=8 Bin is empty.
JXFS_S_BIN_UNKNOWN=16 State of the bin cannot be determined

with the device in its current state.
Event If the value of this property changes, the Device Service will send all

registered StatusListeners a StatusEvent with the following value and the
corresponding JxfsThresholdStatus object. This usually overrides the
generation of a generic UserActionError event.
Value Meaning
JXFS_S_BIN_STATUS thresholdStatus changed.

The setting of the property should only be done by the respective device service (using the
setThresholdState() method).

Methods

isFull Method

Syntax boolean isFull(void);
Description Returns TRUE if the bin is full (the value of the thresholdState

property is JXFS_S_BIN_FULL).
Parameter None
Event No additional events are generated.

isHigh Method

Syntax boolean isHigh(void);
Description Returns TRUE if the bin is high (the value of the thresholdState

property is JXFS_S_BIN_HIGH).
Parameter None
Event No additional events are generated.

isLow Method

Syntax boolean isLow(void);
Description Returns TRUE if the bin is low (the value of the thresholdState

property is JXFS_S_BIN_LOW).
Parameter None
Event No additional events are generated.

isEmpty Method

Syntax boolean isEmpty(void);
Description Returns TRUE if the bin is empty (the value of the thresholdState

property is JXFS_S_BIN_EMPTY).
Parameter None
Event No additional events are generated.

isUnknown Method

Syntax boolean isUnknown(void);
Description Returns TRUE if the status of the bin cannot be determined with the

device in its current state (the value of the thresholdState property is
JXFS_S_BIN_UNKNOWN).

Parameter None
Event No additional events are generated.

Page 67
CWA 13937-1:2000

toString Method

Syntax String toString(void);
Description Returns a small textual representation of this object. This is an

identifier, the int and a short code of the stati (in capitals if true, in
small caps otherwise). Sample: “Threshold(3-FHleu)”.

5.6 Persistent data
In any of the mentioned software layers of J/XFS it may be necessary to store data
persistently. A Device Service might want to keep track of certain counters or other values
which should be savely stored to be available the next time the system is booted. Also, the
application might want to store some data persistently (e.g. the number of times a specific
function was used or similar things).
The currently available standard Java programming environment does not provide a
common way to store such information across all required platforms.
Thus, a generic means is defined within J/XFS to safely store / retrieve arbitrary data from
a central location. By doing so, we reach the goal of being able to use different available
infrastructure with all existing Device Service implementations and also prevent that every
part of a J/XFS installation uses a different means to store its data.

J/XFS does provide only a basic access methods to such data as it is felt that this is
sufficient for J/XFS needs. This means that the following features are NOT found in the
J/XFS repository access interface:
� Elaborate, transaction-based access and rollback mechanisms.
� Mechanisms to enumerate and cycle through key sets.
� Temporary data storage (this can be done by each DS itself). The persistent data store

offered here really writes any keys persistently to a disk.

To sum it up, J/XFS
� provides a simple interface for the Device Services to query the standard settings (like

e.g. querying the local port the device is connected to) via the DeviceInformation
objects,

� provides a dictionary with a flexible key - value access interface for persistent storage
of arbitrary data,

� provides encapsulated access methods to the whole configuration information the
Device Manager needs to successfully set up the J/XFS services.

The place where the information is stored is not known to the application, it is usually a
server based repository, but for certain restricted implementations it may also be the local
hard disk or a local repository. In a specific implementation there may even be a storage
hierarchy involved!

5.7 Version control
New versions of J/XFS should be downward compatible with previous releases. Device
Services of a newer version can be successfully used in older implementations (e.g. an
AcmeService of Version 1.2 can be used by an DeviceControl of Version 1.1).
If possible new versions of the control layer should be able to handle old version of the
service classes by returning a JXFS_E_NOSERVICE from non-supported new functions if
the service is not able to handle the requests.

Each Device Control and Device Service as well as the JxfsDeviceManager has a method
to return its version. This is returned via a JxfsVersion object (see below).
In addition to the version numbers some description calls must be implemented, which
return a string giving a description and copyright. The control layer collects these
properties during startup, e.g. „ACME Magnetic Stripe Reader Device Service 1.03
(c)1999 Acme corp.”
If a class is loaded, its version number can be checked by the calling class through
getXXXVersion() calls against its own version. Generally, to be usable, the major numbers
must match, but the minor number may be different. It is the duty of the calling class

Page 68
CWA 13937-1:2000

(either a Device Control or the Device Manager) to decide whether or not the class is
usable.
Build numbers should be incremented for Bugfixes and minor changes and should not be
needed for decision purposes.

Every time the J/XFS standard is extended by addition of methods to device control
interfaces and device service interfaces, device controls and device services must
implement these new methods to be usable with kernel implementations of the new
standard.
Old services, which do not implement these methods are not usable with new kernel
versions until the vendor of the service provides an up-to-date service implementation. To
bridge this time gap between new kernel release and updated service release, kernel
implementations offer abstract service classes for each device type which can be extended
by device service implementations. These abstract base classes implement their
corresponding device service interfaces and their implementation of new methods throw
JxfsException with error code JXFS_E_NOT_SUPPORTED.
Old device service implementations extending these abstract classes inherit the new
methods and can so continued to be used with new kernels. Once the vendor provides the
new functionality in updated device service implementations, the service classes override
the inherited methods and perform their intended function instead of throwing
JxfsException with error code JXFS_E_NOT_SUPPORTED.

J/XFS kernel
(J/XFS forum)

Java VM

J/XFS
Applicatation

class file
(user)

DeviceServiceA
class file

(device vendor)

Instance of
DeviceServiceA

DeviceServiceA

Abstract class
DeviceServiceA

Interface for
DeviceServiceA

implements

extends

instanceof

JxfsVersion
The .JxfsVersion object delivers version information for J/XFS. It also contains a
description of the generating object. Each Device Control and Device Service has such an
object which is returned in the getDeviceControlVersion() and getDeviceServiceVersion()
methods. The (only) constructor for this class is JxfsVersion(int vendorMajor, int
vendorMinor, int vendorBuild, int jxfsMajor, int jxfsMinor, String description).
Usually, this is a static object within each class which needs to deliver versioning
information of itself.
Additionally, the following methods can be used to query the object:

Page 69
CWA 13937-1:2000

� public int getVendorMajor()
Return the major release number of the vendor’s implementation.

� public int getVendorMinor()
Return the minor release number of the vendor’s implementation.

� public int getVendorBuild()
Return the build number of the vendor’s implementation.

� public int getJxfsMajor()
Return the major release number of the implemented J/XFS standard.

� public int getJxfsMinor()
Return the minor release number of the implemented J/XFS standard.

� public String getDescription()
Return a more detailed description about this object which should also be suitable to
be printed out. So, the format should be similar to „ACME Magnetic Stripe Reader
Device Service 1.03 (c)1999 Acme corp.”

